Resumen
Automatic brain tumor segmentation from multimodal MRI plays a significant role in assisting the diagnosis, treatment, and surgery of glioblastoma and lower glade glioma. In this article, we propose applying several deep learning techniques implemented in AWS SageMaker Framework. The different CNN architectures are adapted and fine-tuned for our purpose of brain tumor segmentation.The experiments are evaluated and analyzed in order to obtain the best parameters as possible for the models created. The selected architectures are trained on the publicly available BraTS 2017?2020 dataset. The segmentation distinguishes the background, healthy tissue, whole tumor, edema, enhanced tumor, and necrosis. Further, a random search for parameter optimization is presented to additionally improve the architectures obtained. Lastly, we also compute the detection results of the ensemble model created from the weighted average of the six models described. The goal of the ensemble is to improve the segmentation at the tumor tissue boundaries. Our results are compared to the BraTS 2020 competition and leaderboard and are among the first 25% considering the ranking of Dice scores.