Resumen
A brain tumor is a distorted tissue wherein cells replicate rapidly and indefinitely, with no control over tumor growth. Deep learning has been argued to have the potential to overcome the challenges associated with detecting and intervening in brain tumors. It is well established that the segmentation method can be used to remove abnormal tumor regions from the brain, as this is one of the advanced technological classification and detection tools. In the case of brain tumors, early disease detection can be achieved effectively using reliable advanced A.I. and Neural Network classification algorithms. This study aimed to critically analyze the proposed literature solutions, use the Visual Geometry Group (VGG 16) for discovering brain tumors, implement a convolutional neural network (CNN) model framework, and set parameters to train the model for this challenge. VGG is used as one of the highest-performing CNN models because of its simplicity. Furthermore, the study developed an effective approach to detect brain tumors using MRI to aid in making quick, efficient, and precise decisions. Faster CNN used the VGG 16 architecture as a primary network to generate convolutional feature maps, then classified these to yield tumor region suggestions. The prediction accuracy was used to assess performance. Our suggested methodology was evaluated on a dataset for brain tumor diagnosis using MR images comprising 253 MRI brain images, with 155 showing tumors. Our approach could identify brain tumors in MR images. In the testing data, the algorithm outperformed the current conventional approaches for detecting brain tumors (Precision = 96%, 98.15%, 98.41% and F1-score = 91.78%, 92.6% and 91.29% respectively) and achieved an excellent accuracy of CNN 96%, VGG 16 98.5% and Ensemble Model 98.14%. The study also presents future recommendations regarding the proposed research work.