|
|
|
Ziyi Wang, Xinran Li, Luoyang Sun, Haifeng Zhang, Hualin Liu and Jun Wang
Efficient yet sufficient exploration remains a critical challenge in reinforcement learning (RL), especially for Markov Decision Processes (MDPs) with vast action spaces. Previous approaches have commonly involved projecting the original action space int...
ver más
|
|
|
|
|
|
|
Nadia Brancati and Maria Frucci
To support pathologists in breast tumor diagnosis, deep learning plays a crucial role in the development of histological whole slide image (WSI) classification methods. However, automatic classification is challenging due to the high-resolution data and ...
ver más
|
|
|
|
|
|
|
Mojtaba Nayyeri, Modjtaba Rouhani, Hadi Sadoghi Yazdi, Marko M. Mäkelä, Alaleh Maskooki and Yury Nikulin
One of the main disadvantages of the traditional mean square error (MSE)-based constructive networks is their poor performance in the presence of non-Gaussian noises. In this paper, we propose a new incremental constructive network based on the correntro...
ver más
|
|
|
|
|
|
|
Tamás Kegyes, Alex Kummer, Zoltán Süle and János Abonyi
We analyzed a special class of graph traversal problems, where the distances are stochastic, and the agent is restricted to take a limited range in one go. We showed that both constrained shortest Hamiltonian pathfinding problems and disassembly line bal...
ver más
|
|
|
|
|
|
|
Van Minh Nguyen, Emma Sandidge, Trupti Mahendrakar and Ryan T. White
The accelerating deployment of spacecraft in orbit has generated interest in on-orbit servicing (OOS), inspection of spacecraft, and active debris removal (ADR). Such missions require precise rendezvous and proximity operations in the vicinity of non-coo...
ver más
|
|
|
|
|
|
|
Ying-Hsun Lai, Shin-Yeh Chen, Wen-Chi Chou, Hua-Yang Hsu and Han-Chieh Chao
Federated learning trains a neural network model using the client?s data to maintain the benefits of centralized model training while maintaining their privacy. However, if the client data are not independently and identically distributed (non-IID) becau...
ver más
|
|
|
|
|
|
|
Xu Feng, Mengyang He, Lei Zhuang, Yanrui Song and Rumeng Peng
SAGIN is formed by the fusion of ground networks and aircraft networks. It breaks through the limitation of communication, which cannot cover the whole world, bringing new opportunities for network communication in remote areas. However, many heterogeneo...
ver más
|
|
|
|
|
|
|
Longxin Yao, Yun Lu, Mingjiang Wang, Yukun Qian and Heng Li
The construction of complex networks from electroencephalography (EEG) proves to be an effective method for representing emotion patterns in affection computing as it offers rich spatiotemporal EEG features associated with brain emotions. In this paper, ...
ver más
|
|
|
|
|
|
|
Andrea D?Ambrosio and Roberto Furfaro
This paper demonstrates the utilization of Pontryagin Neural Networks (PoNNs) to acquire control strategies for achieving fuel-optimal trajectories. PoNNs, a subtype of Physics-Informed Neural Networks (PINNs), are tailored for solving optimal control pr...
ver más
|
|
|
|
|
|
|
Peranut Nimitsurachat and Peter Washington
Emotion recognition models using audio input data can enable the development of interactive systems with applications in mental healthcare, marketing, gaming, and social media analysis. While the field of affective computing using audio data is rich, a m...
ver más
|
|
|
|