|
|
|
Zhou Fang, Xiaoyong Wang, Liang Zhang and Bo Jiang
Currently, deep learning is extensively utilized for ship target detection; however, achieving accurate and real-time detection of multi-scale targets remains a significant challenge. Considering the diverse scenes, varied scales, and complex backgrounds...
ver más
|
|
|
|
|
|
|
Haidi Badr, Nayer Wanas and Magda Fayek
Unsupervised domain adaptation (UDA) presents a significant challenge in sentiment analysis, especially when faced with differences between source and target domains. This study introduces Weighted Sequential Unsupervised Domain Adaptation (WS-UDA), a no...
ver más
|
|
|
|
|
|
|
Zheng Li, Xinkai Chen, Jiaqing Fu, Ning Xie and Tingting Zhao
With the development of electronic game technology, the content of electronic games presents a larger number of units, richer unit attributes, more complex game mechanisms, and more diverse team strategies. Multi-agent deep reinforcement learning shines ...
ver más
|
|
|
|
|
|
|
Maxim Kolomeets, Olga Tushkanova, Vasily Desnitsky, Lidia Vitkova and Andrey Chechulin
This paper aims to test the hypothesis that the quality of social media bot detection systems based on supervised machine learning may not be as accurate as researchers claim, given that bots have become increasingly sophisticated, making it difficult fo...
ver más
|
|
|
|
|
|
|
Emre Ercan, Muhammed Serdar Avci, Mahmut Pekedis and Çaglayan Hizal
Structural health monitoring (SHM) plays a crucial role in extending the service life of engineering structures. Effective monitoring not only provides insights into the health and functionality of a structure but also serves as an early warning system f...
ver más
|
|
|
|
|
|
|
Longde Wang, Hui Cao, Zhichao Cui and Zeren Ai
Marine engines confront challenges of varying working conditions and intricate failures. Existing studies have primarily concentrated on fault diagnosis in a single condition, overlooking the adaptability of these methods in diverse working condition. To...
ver más
|
|
|
|
|
|
|
Xiaodong Cui, Zhuofan He, Yangtao Xue, Keke Tang, Peican Zhu and Jing Han
Underwater Acoustic Target Recognition (UATR) plays a crucial role in underwater detection devices. However, due to the difficulty and high cost of collecting data in the underwater environment, UATR still faces the problem of small datasets. Few-shot le...
ver más
|
|
|
|
|
|
|
Shiva Raj Pokhrel, Jonathan Kua, Deol Satish, Sebnem Ozer, Jeff Howe and Anwar Walid
We introduce a novel multipath data transport approach at the transport layer referred to as ?Deep Deterministic Policy Gradient for Multipath Performance-oriented Congestion Control? (DDPG-MPCC), which leverages deep reinforcement learning to enhance co...
ver más
|
|
|
|
|
|
|
Yu Yao and Quan Qian
We develop the online process parameter design (OPPD) framework for efficiently handling streaming data collected from industrial automation equipment. This framework integrates online machine learning, concept drift detection and Bayesian optimization t...
ver más
|
|
|
|
|
|
|
Weiying Wang and Toshihiro Osaragi
The generation and prediction of daily human mobility patterns have raised significant interest in many scientific disciplines. Using various data sources, previous studies have examined several deep learning frameworks, such as the RNN and GAN, to synth...
ver más
|
|
|
|