3.770   Artículos

 
en línea
Alvaro A. Teran-Quezada, Victor Lopez-Cabrera, Jose Carlos Rangel and Javier E. Sanchez-Galan    
Convolutional neural networks (CNN) have provided great advances for the task of sign language recognition (SLR). However, recurrent neural networks (RNN) in the form of long?short-term memory (LSTM) have become a means for providing solutions to problem... ver más
Revista: Big Data and Cognitive Computing    Formato: Electrónico

 
en línea
Che-Hao Chang, Jason Lin, Jia-Wei Chang, Yu-Shun Huang, Ming-Hsin Lai and Yen-Jen Chang    
Recently, data-driven approaches have become the dominant solution for prediction problems in agricultural industries. Several deep learning models have been applied to crop yield prediction in smart farming. In this paper, we proposed an efficient hybri... ver más
Revista: Agriculture    Formato: Electrónico

 
en línea
Zheng Li, Xinkai Chen, Jiaqing Fu, Ning Xie and Tingting Zhao    
With the development of electronic game technology, the content of electronic games presents a larger number of units, richer unit attributes, more complex game mechanisms, and more diverse team strategies. Multi-agent deep reinforcement learning shines ... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Ancilon Leuch Alencar, Marcelo Dornbusch Lopes, Anita Maria da Rocha Fernandes, Julio Cesar Santos dos Anjos, Juan Francisco De Paz Santana and Valderi Reis Quietinho Leithardt    
In the current era of social media, the proliferation of images sourced from unreliable origins underscores the pressing need for robust methods to detect forged content, particularly amidst the rapid evolution of image manipulation technologies. Existin... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Ying-Hsun Lai, Shin-Yeh Chen, Wen-Chi Chou, Hua-Yang Hsu and Han-Chieh Chao    
Federated learning trains a neural network model using the client?s data to maintain the benefits of centralized model training while maintaining their privacy. However, if the client data are not independently and identically distributed (non-IID) becau... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Kyle DeMedeiros, Chan Young Koh and Abdeltawab Hendawi    
The Chicago Array of Things (AoT) is a robust dataset taken from over 100 nodes over four years. Each node contains over a dozen sensors. The array contains a series of Internet of Things (IoT) devices with multiple heterogeneous sensors connected to a p... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
María Gema Carrasco-García, María Inmaculada Rodríguez-García, Juan Jesús Ruíz-Aguilar, Lipika Deka, David Elizondo and Ignacio José Turias Domínguez    
Hyperspectral technology has been playing a leading role in monitoring oil spills in marine environments, which is an issue of international concern. In the case of monitoring oil spills in local areas, hyperspectral technology of small dimensions is the... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Pengfei Ning, Dianjun Zhang, Xuefeng Zhang, Jianhui Zhang, Yulong Liu, Xiaoyi Jiang and Yansheng Zhang    
The Array for Real-time Geostrophic Oceanography (Argo) program provides valuable data for maritime research and rescue operations. This paper is based on Argo historical and satellite observations, and inverted sea surface and submarine drift trajectori... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Weilong Guang, Peng Wang, Jinshuai Zhang, Linjuan Yuan, Yue Wang, Guang Feng and Ran Tao    
Predicting the flow situation of cavitation owing to its high-dimensional nonlinearity has posed great challenges. To address these challenges, this study presents a novel reduced order modeling (ROM) method to accurately analyze and predict cavitation f... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Diya Wang, Yonglin Zhang, Lixin Wu, Yupeng Tai, Haibin Wang, Jun Wang, Fabrice Meriaudeau and Fan Yang    
In recent years, the study of deep learning techniques for underwater acoustic channel estimation has gained widespread attention. However, existing neural network channel estimation methods often overfit to training dataset noise levels, leading to dimi... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

« Anterior     Página: 1 de 229     Siguiente »