|
|
|
Alvaro A. Teran-Quezada, Victor Lopez-Cabrera, Jose Carlos Rangel and Javier E. Sanchez-Galan
Convolutional neural networks (CNN) have provided great advances for the task of sign language recognition (SLR). However, recurrent neural networks (RNN) in the form of long?short-term memory (LSTM) have become a means for providing solutions to problem...
ver más
|
|
|
|
|
|
|
Che-Hao Chang, Jason Lin, Jia-Wei Chang, Yu-Shun Huang, Ming-Hsin Lai and Yen-Jen Chang
Recently, data-driven approaches have become the dominant solution for prediction problems in agricultural industries. Several deep learning models have been applied to crop yield prediction in smart farming. In this paper, we proposed an efficient hybri...
ver más
|
|
|
|
|
|
|
Zheng Li, Xinkai Chen, Jiaqing Fu, Ning Xie and Tingting Zhao
With the development of electronic game technology, the content of electronic games presents a larger number of units, richer unit attributes, more complex game mechanisms, and more diverse team strategies. Multi-agent deep reinforcement learning shines ...
ver más
|
|
|
|
|
|
|
Ancilon Leuch Alencar, Marcelo Dornbusch Lopes, Anita Maria da Rocha Fernandes, Julio Cesar Santos dos Anjos, Juan Francisco De Paz Santana and Valderi Reis Quietinho Leithardt
In the current era of social media, the proliferation of images sourced from unreliable origins underscores the pressing need for robust methods to detect forged content, particularly amidst the rapid evolution of image manipulation technologies. Existin...
ver más
|
|
|
|
|
|
|
Ying-Hsun Lai, Shin-Yeh Chen, Wen-Chi Chou, Hua-Yang Hsu and Han-Chieh Chao
Federated learning trains a neural network model using the client?s data to maintain the benefits of centralized model training while maintaining their privacy. However, if the client data are not independently and identically distributed (non-IID) becau...
ver más
|
|
|
|
|
|
|
Kyle DeMedeiros, Chan Young Koh and Abdeltawab Hendawi
The Chicago Array of Things (AoT) is a robust dataset taken from over 100 nodes over four years. Each node contains over a dozen sensors. The array contains a series of Internet of Things (IoT) devices with multiple heterogeneous sensors connected to a p...
ver más
|
|
|
|
|
|
|
María Gema Carrasco-García, María Inmaculada Rodríguez-García, Juan Jesús Ruíz-Aguilar, Lipika Deka, David Elizondo and Ignacio José Turias Domínguez
Hyperspectral technology has been playing a leading role in monitoring oil spills in marine environments, which is an issue of international concern. In the case of monitoring oil spills in local areas, hyperspectral technology of small dimensions is the...
ver más
|
|
|
|
|
|
|
Pengfei Ning, Dianjun Zhang, Xuefeng Zhang, Jianhui Zhang, Yulong Liu, Xiaoyi Jiang and Yansheng Zhang
The Array for Real-time Geostrophic Oceanography (Argo) program provides valuable data for maritime research and rescue operations. This paper is based on Argo historical and satellite observations, and inverted sea surface and submarine drift trajectori...
ver más
|
|
|
|
|
|
|
Weilong Guang, Peng Wang, Jinshuai Zhang, Linjuan Yuan, Yue Wang, Guang Feng and Ran Tao
Predicting the flow situation of cavitation owing to its high-dimensional nonlinearity has posed great challenges. To address these challenges, this study presents a novel reduced order modeling (ROM) method to accurately analyze and predict cavitation f...
ver más
|
|
|
|
|
|
|
Diya Wang, Yonglin Zhang, Lixin Wu, Yupeng Tai, Haibin Wang, Jun Wang, Fabrice Meriaudeau and Fan Yang
In recent years, the study of deep learning techniques for underwater acoustic channel estimation has gained widespread attention. However, existing neural network channel estimation methods often overfit to training dataset noise levels, leading to dimi...
ver más
|
|
|
|