57   Artículos

 
en línea
Egor I. Chetkin, Sergei L. Shishkin and Bogdan L. Kozyrskiy    
Bayesian neural networks (BNNs) are effective tools for a variety of tasks that allow for the estimation of the uncertainty of the model. As BNNs use prior constraints on parameters, they are better regularized and less prone to overfitting, which is a s... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Eike Jakubowitz, Thekla Feist, Alina Obermeier, Carina Gempfer, Christof Hurschler, Henning Windhagen and Max-Heinrich Laves    
Human grasping is a relatively fast process and control signals for upper limb prosthetics cannot be generated and processed in a sufficiently timely manner. The aim of this study was to examine whether discriminating between different grasping movements... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Tadashi Yamamoto and Toyohiro Hamaguchi    
In this study, we aimed to evaluate the effectiveness of a brain robot in rehabilitation that combines motor imagery (MI), robotic motor assistance, and electrical stimulation. Thirteen in-patients with severe post-stroke hemiplegia underwent electroence... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Sepideh Kilani, Seyedeh Nadia Aghili and Mircea Hulea    
A new approach is introduced to address the subject dependency problem in P300-based brain-computer interfaces (BCI) by using transfer learning. The occurrence of P300, an event-related potential, is primarily associated with changes in natural neuron ac... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Georgios Prapas, Kosmas Glavas, Katerina D. Tzimourta, Alexandros T. Tzallas and Markos G. Tsipouras    
Brain-computer interfaces (BCIs) are becoming an increasingly popular technology, used in a variety of fields such as medical, gaming, and lifestyle. This paper describes a 3D non-invasive BCI game that uses a Muse 2 EEG headband to acquire electroenceph... ver más
Revista: Information    Formato: Electrónico

 
en línea
Rito Clifford Maswanganyi, Chungling Tu, Pius Adewale Owolawi and Shengzhi Du    
Transfer learning (TL) has been proven to be one of the most significant techniques for cross-subject classification in electroencephalogram (EEG)-based brain-computer interfaces (BCI). Hence, it is widely used to address the challenges of cross-session ... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Alexey Kozin, Anton Gerasimov, Maxim Bakaev, Anton Pashkov and Olga Razumnikova    
Brain?computer interfaces (BCIs) based on steady-state visually evoked potentials (SSVEPs) are inexpensive and do not require user training. However, the highly personalized reaction to visual stimulation is an obstacle to the wider application of this t... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Diego F. Collazos-Huertas, Andrés M. Álvarez-Meza and German Castellanos-Dominguez    
Brain activity stimulated by the motor imagery paradigm (MI) is measured by Electroencephalography (EEG), which has several advantages to be implemented with the widely used Brain?Computer Interfaces (BCIs) technology. However, the substantial inter/intr... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Dawid Pawus and Szczepan Paszkiel    
This article is a continuation and extension of research on a new approach to the classification and recognition of EEG signals. Their goal is to control the mobile robot through mental commands, using a measuring set such as Emotiv Epoc Flex Gel. The he... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Woo-Sung Choi and Hong-Gi Yeom    
A brain?computer interface (BCI) is a promising technology that can analyze brain signals and control a robot or computer according to a user?s intention. This paper introduces our studies to overcome the challenges of using BCIs in daily life. There are... ver más
Revista: Applied Sciences    Formato: Electrónico

« Anterior     Página: 1 de 3     Siguiente »