10   Artículos

 
en línea
Xiaole Wang, Jiwei Qin, Shangju Deng and Wei Zeng    
In recent years, the application of knowledge graphs to alleviate cold start and data sparsity problems of users and items in recommendation systems, has aroused great interest. In this paper, in order to address the insufficient representation of user a... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Yi Liu, Chengyu Yin, Jingwei Li, Fang Wang and Senzhang Wang    
Accurately predicting user?item interactions is critically important in many real applications, including recommender systems and user behavior analysis in social networks. One major drawback of existing studies is that they generally directly analyze th... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Jianfei Li, Yongbin Wang and Zhulin Tao    
In recent years, graph neural networks (GNNS) have been demonstrated to be a powerful way to learn graph data. The existing recommender systems based on the implicit factor models mainly use the interactive information between users and items for trainin... ver más
Revista: Information    Formato: Electrónico

 
en línea
Ninghua Sun, Tao Chen, Wenshan Guo and Longya Ran    
The problems with the information overload of e-government websites have been a big obstacle for users to make decisions. One promising approach to solve this problem is to deploy an intelligent recommendation system on e-government platforms. Collaborat... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Bo Wang, Feiyue Ye and Jialu Xu    
A recommendation system can recommend items of interest to users. However, due to the scarcity of user rating data and the similarity of single ratings, the accuracy of traditional collaborative filtering algorithms (CF) is limited. Compared with user ra... ver más
Revista: Future Internet    Formato: Electrónico

« Anterior     Página: 1 de 1     Siguiente »