|
|
|
Suryakant Tyagi and Sándor Szénási
Machine learning and speech emotion recognition are rapidly evolving fields, significantly impacting human-centered computing. Machine learning enables computers to learn from data and make predictions, while speech emotion recognition allows computers t...
ver más
|
|
|
|
|
|
|
Yusuf Brima, Ulf Krumnack, Simone Pika and Gunther Heidemann
Self-supervised learning (SSL) has emerged as a promising paradigm for learning flexible speech representations from unlabeled data. By designing pretext tasks that exploit statistical regularities, SSL models can capture useful representations that are ...
ver más
|
|
|
|
|
|
|
Timotej Jagric and Alja? Herman
This paper presents a broad study on the application of the BERT (Bidirectional Encoder Representations from Transformers) model for multiclass text classification, specifically focusing on categorizing business descriptions into 1 of 13 distinct industr...
ver más
|
|
|
|
|
|
|
Jie Zhang, Fan Li, Xin Zhang, Yue Cheng and Xinhong Hei
As a crucial task for disease diagnosis, existing semi-supervised segmentation approaches process labeled and unlabeled data separately, ignoring the relationships between them, thereby limiting further performance improvements. In this work, we introduc...
ver más
|
|
|
|
|
|
|
Olga Kurasova, Arnoldas Bud?ys and Viktor Medvedev
As artificial intelligence has evolved, deep learning models have become important in extracting and interpreting complex patterns from raw multidimensional data. These models produce multidimensional embeddings that, while containing a lot of informatio...
ver más
|
|
|
|
|
|
|
Mizuki Asano, Takumi Miyoshi and Taku Yamazaki
Smart home environments, which consist of various Internet of Things (IoT) devices to support and improve our daily lives, are expected to be widely adopted in the near future. Owing to a lack of awareness regarding the risks associated with IoT devices ...
ver más
|
|
|
|
|
|
|
Hugo Valayer, Nathalie Bartoli, Mauricio Castaño-Aguirre, Rémi Lafage, Thierry Lefebvre, Andrés F. López-Lopera and Sylvain Mouton
In aerodynamics, characterizing the aerodynamic behavior of aircraft typically requires a large number of observation data points. Real experiments can generate thousands of data points with suitable accuracy, but they are time-consuming and resource-int...
ver más
|
|
|
|
|
|
|
Peranut Nimitsurachat and Peter Washington
Emotion recognition models using audio input data can enable the development of interactive systems with applications in mental healthcare, marketing, gaming, and social media analysis. While the field of affective computing using audio data is rich, a m...
ver más
|
|
|
|
|
|
|
Gulsum Alicioglu and Bo Sun
Deep learning (DL) models have achieved state-of-the-art performance in many domains. The interpretation of their working mechanisms and decision-making process is essential because of their complex structure and black-box nature, especially for sensitiv...
ver más
|
|
|
|
|
|
|
Jie Ren, Changmiao Li, Yaohui An, Weichuan Zhang and Changming Sun
Few-shot fine-grained image classification (FSFGIC) methods refer to the classification of images (e.g., birds, flowers, and airplanes) belonging to different subclasses of the same species by a small number of labeled samples. Through feature representa...
ver más
|
|
|
|