|
|
|
Saeed Samadianfard, Salar Jarhan, Ely Salwana, Amir Mosavi, Shahaboddin Shamshirband and Shatirah Akib
Advancement in river flow prediction systems can greatly empower the operational river management to make better decisions, practices, and policies. Machine learning methods recently have shown promising results in building accurate models for river flow...
ver más
|
|
|
|
|
|
|
Yeon Moon Choo, Deok Jun Jo, Gwan Seon Yun and Eui Hoon Lee
Frequent localized torrential rains, excessive population density in urban areas, and increased impervious areas have led to massive flood damage that has been causing overloading of drainage systems (watersheds, reservoirs, drainage pump sites, etc.). F...
ver más
|
|
|
|
|
|
|
José Luis da Silva Pinho,António Pereira,Rolando Faria
Pág. 69 - 82
Os sistemas de previsão e alerta utilizados na gestão de recursos hídricos e operação de sistemas de drenagem tiveram desenvolvimentos significativos nos últimos anos. Esses desenvolvimentos resultaram da disponibilidade de informações meteorológicas em ...
ver más
|
|
|
|
|
|
|
José Francisco Lima, Fernanda Catarina Pereira, Arminda Manuela Gonçalves and Marco Costa
Linear models, seasonal autoregressive integrated moving average (SARIMA) models, and state-space models have been widely adopted to model and forecast economic data. While modeling using linear models and SARIMA models is well established in the literat...
ver más
|
|
|
|
|
|
|
Yussuf Ahmed, Muhammad Ajmal Azad and Taufiq Asyhari
In recent years, there has been a notable surge in both the complexity and volume of targeted cyber attacks, largely due to heightened vulnerabilities in widely adopted technologies. The Prediction and detection of early attacks are vital to mitigating p...
ver más
|
|
|
|
|
|
|
Louis Closson, Christophe Cérin, Didier Donsez and Jean-Luc Baudouin
This paper aims to provide discernment toward establishing a general framework, dedicated to data analysis and forecasting in smart buildings. It constitutes an industrial return of experience from an industrialist specializing in IoT supported by the ac...
ver más
|
|
|
|
|
|
|
Xiaoou Li
This paper tackles the challenge of time series forecasting in the presence of missing data. Traditional methods often struggle with such data, which leads to inaccurate predictions. We propose a novel framework that combines the strengths of Generative ...
ver más
|
|
|
|
|
|
|
Junting Wang, Tianhe Xu, Wei Huang, Liping Zhang, Jianxu Shu, Yangfan Liu and Linyang Li
Underwater sound speed is one of the most significant factors that affects high-accuracy underwater acoustic positioning and navigation. Due to its complex temporal variation, the forecasting of the underwater sound speed field (SSF) becomes a challengin...
ver más
|
|
|
|
|
|
|
Davide Fronzi, Gagan Narang, Alessandro Galdelli, Alessandro Pepi, Adriano Mancini and Alberto Tazioli
Forecasting of water availability has become of increasing interest in recent decades, especially due to growing human pressure and climate change, affecting groundwater resources towards a perceivable depletion. Numerous research papers developed at var...
ver más
|
|
|
|
|
|
|
Fahim Sufi
In the face of escalating cyber threats that have contributed significantly to global economic losses, this study presents a comprehensive dataset capturing the multifaceted nature of cyber-attacks across 225 countries over a 14-month period from October...
ver más
|
|
|
|