|
|
|
Abdullah F. Al-Aboosi, Aldo Jonathan Muñoz Vazquez, Fadhil Y. Al-Aboosi, Mahmoud El-Halwagi and Wei Zhan
Accurate prediction of renewable energy output is essential for integrating sustainable energy sources into the grid, facilitating a transition towards a more resilient energy infrastructure. Novel applications of machine learning and artificial intellig...
ver más
|
|
|
|
|
|
|
Sorin Zoican, Roxana Zoican, Dan Galatchi and Marius Vochin
This paper illustrates a general framework in which a neural network application can be easily integrated and proposes a traffic forecasting approach that uses neural networks based on graphs. Neural networks based on graphs have the advantage of capturi...
ver más
|
|
|
|
|
|
|
Coskun Hamzaçebi
Forecasting electricity consumption is a very important issue for governments and electricity related foundations of public sector. Recently, Grey Modelling (GM (1,1)) has been used to forecast electricity demand successfully. GM (1,1) is useful when the...
ver más
|
|
|
|
|
|
|
Wei Zhuang, Zhiheng Li, Ying Wang, Qingyu Xi and Min Xia
Predicting photovoltaic (PV) power generation is a crucial task in the field of clean energy. Achieving high-accuracy PV power prediction requires addressing two challenges in current deep learning methods: (1) In photovoltaic power generation prediction...
ver más
|
|
|
|
|
|
|
Qianyang Li and Xingjun Zhang
For time series forecasting, multivariate grey models are excellent at handling incomplete or vague information. The GM(1, N) model represents this group of models and has been widely used in various fields. However, constructing a meaningful GM(1, N) mo...
ver más
|
|
|
|
|
|
|
Rafael Pacheco-Blazquez, Julio Garcia-Espinosa, Daniel Di Capua and Andres Pastor Sanchez
This paper delves into the application of digital twin monitoring techniques for enhancing offshore floating wind turbine performance, with a detailed case study that uses open-source digital twin software. We explore the practical implementation of digi...
ver más
|
|
|
|
|
|
|
Louis Closson, Christophe Cérin, Didier Donsez and Jean-Luc Baudouin
This paper aims to provide discernment toward establishing a general framework, dedicated to data analysis and forecasting in smart buildings. It constitutes an industrial return of experience from an industrialist specializing in IoT supported by the ac...
ver más
|
|
|
|
|
|
|
Muhammad Rifqi Maarif, Arif Rahman Saleh, Muhammad Habibi, Norma Latif Fitriyani and Muhammad Syafrudin
The accurate forecasting of energy consumption is essential for companies, primarily for planning energy procurement. An overestimated or underestimated forecasting value may lead to inefficient energy usage. Inefficient energy usage could also lead to f...
ver más
|
|
|
|
|
|
|
Carla Sahori Seefoo Jarquin, Alessandro Gandelli, Francesco Grimaccia and Marco Mussetta
Understanding how, why and when energy consumption changes provides a tool for decision makers throughout the power networks. Thus, energy forecasting provides a great service. This research proposes a probabilistic approach to capture the five inherent ...
ver más
|
|
|
|
|
|
|
Samuel-Soma M. Ajibade, Festus Victor Bekun, Festus Fatai Adedoyin, Bright Akwasi Gyamfi and Anthonia Oluwatosin Adediran
This study examines the research climate on machine learning applications in renewable energy (MLARE). Therefore, the publication trends (PT) and bibliometric analysis (BA) on MLARE research published and indexed in the Elsevier Scopus database between 2...
ver más
|
|
|
|