366   Artículos

 
en línea
Vera Afreixo, Ana Helena Tavares, Vera Enes, Miguel Pinheiro, Leonor Rodrigues and Gabriela Moura    
In this work, we aimed to establish a stable and accurate procedure with which to perform feature selection in datasets with a much higher number of predictors than individuals, as in genome-wide association studies. Due to the instability of feature sel... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Mohamed Shenify, Fokrul Alom Mazarbhuiya and A. S. Wungreiphi    
There are many applications of anomaly detection in the Internet of Things domain. IoT technology consists of a large number of interconnecting digital devices not only generating huge data continuously but also making real-time computations. Since IoT d... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Iqbal Muhammad Zubair, Yung-Seop Lee and Byunghoon Kim    
The selection of group features is a critical aspect in reducing model complexity by choosing the most essential group features, while eliminating the less significant ones. The existing group feature selection methods select a set of important group fea... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
András Hubai, Sándor Szabó and Bogdán Zaválnij    
The principal component analysis is a well-known and widely used technique to determine the essential dimension of a data set. Broadly speaking, it aims to find a low-dimensional linear manifold that retains a large part of the information contained in t... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Azal Ahmad Khan, Salman Hussain and Rohitash Chandra    
Quantum computing has opened up various opportunities for the enhancement of computational power in the coming decades. We can design algorithms inspired by the principles of quantum computing, without implementing in quantum computing infrastructure. In... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Marco Scutari    
Bayesian networks (BNs) are a foundational model in machine learning and causal inference. Their graphical structure can handle high-dimensional problems, divide them into a sparse collection of smaller ones, underlies Judea Pearl?s causality, and determ... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Yifan Wang, Jinglei Xu, Qihao Qin, Ruiqing Guan and Le Cai    
In this study, we propose a novel dynamic mode decomposition (DMD) energy sorting criterion that works in conjunction with the conventional DMD amplitude-frequency sorting criterion on the high-dimensional schlieren dataset of the unsteady flow of a spik... ver más
Revista: Aerospace    Formato: Electrónico

 
en línea
Boqian Ji, Jun Huang, Xiaoqiang Lu, Yacong Wu and Jingjiang Liu    
The wing aerodynamic shape optimization is a typical high-dimensional problem with numerous independent design variables. Researching methods to reduce the dimensionality of optimization from the perspective of aerodynamic characteristics is necessary. O... ver más
Revista: Aerospace    Formato: Electrónico

 
en línea
Ligang Yuan, Jing Liu, Haiyan Chen, Daoming Fang and Wenlu Chen    
Scene taxiing time is an important indicator for assessing the operational efficiency of airports as well as green airports, and it is also a fundamental parameter in flight regularity statistics. The accurate prediction of taxiing time can help decision... ver más
Revista: Aerospace    Formato: Electrónico

 
en línea
Weilong Guang, Peng Wang, Jinshuai Zhang, Linjuan Yuan, Yue Wang, Guang Feng and Ran Tao    
Predicting the flow situation of cavitation owing to its high-dimensional nonlinearity has posed great challenges. To address these challenges, this study presents a novel reduced order modeling (ROM) method to accurately analyze and predict cavitation f... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

« Anterior     Página: 1 de 22     Siguiente »