|
|
|
Guillaume Soulez
Pág. Pág. 55 - 72
El artículo revisa críticamente las categorías con las cuales el ethos de los conductores y locutores de los medios. Define este ethos como un mecanismo de adecuación que contextualiza el discurso de los enunciadores y orienta las expectativas de los púb...
ver más
|
|
|
|
|
|
|
Haohan Shi, Xiyu Shi and Safak Dogan
Audio inpainting plays an important role in addressing incomplete, damaged, or missing audio signals, contributing to improved quality of service and overall user experience in multimedia communications over the Internet and mobile networks. This paper p...
ver más
|
|
|
|
|
|
|
Hyeon-Kyu Noh and Hong-June Park
A convolutional neural network (CNN) transducer decoder was proposed to reduce the decoding time of an end-to-end automatic speech recognition (ASR) system while maintaining accuracy. The CNN of 177 k parameters and a kernel size of 6 generates the proba...
ver más
|
|
|
|
|
|
|
Lizhen Jia, Yanyan Xu and Dengfeng Ke
Recent speech enhancement studies have mostly focused on completely separating noise from human voices. Due to the lack of specific structures for harmonic fitting in previous studies and the limitations of the traditional convolutional receptive field, ...
ver más
|
|
|
|
|
|
|
Jingwen Yang and Ruohua Zhou
Whisper speaker recognition (WSR) has received extensive attention from researchers in recent years, and it plays an important role in medical, judicial, and other fields. Among them, the establishment of a whisper dataset is very important for the study...
ver más
|
|
|
|
|
|
|
Yusuf Brima, Ulf Krumnack, Simone Pika and Gunther Heidemann
Self-supervised learning (SSL) has emerged as a promising paradigm for learning flexible speech representations from unlabeled data. By designing pretext tasks that exploit statistical regularities, SSL models can capture useful representations that are ...
ver más
|
|
|
|
|
|
|
Jiahao Fan and Weijun Pan
In recent years, automatic speech recognition (ASR) technology has improved significantly. However, the training process for an ASR model is complex, involving large amounts of data and a large number of algorithms. The task of training a new model for a...
ver más
|
|
|
|
|
|
|
Ping Huang and Yafeng Wu
Airborne speech enhancement is always a major challenge for the security of airborne systems. Recently, multi-objective learning technology has become one of the mainstream methods of monaural speech enhancement. In this paper, we propose a novel multi-o...
ver más
|
|
|
|
|
|
|
Mohammed Saïd Kasttet, Abdelouahid Lyhyaoui, Douae Zbakh, Adil Aramja and Abderazzek Kachkari
Recently, artificial intelligence and data science have witnessed dramatic progress and rapid growth, especially Automatic Speech Recognition (ASR) technology based on Hidden Markov Models (HMMs) and Deep Neural Networks (DNNs). Consequently, new end-to-...
ver más
|
|
|
|
|
|
|
Suryakant Tyagi and Sándor Szénási
Machine learning and speech emotion recognition are rapidly evolving fields, significantly impacting human-centered computing. Machine learning enables computers to learn from data and make predictions, while speech emotion recognition allows computers t...
ver más
|
|
|
|