19   Artículos

 
en línea
Min-Kyung Lee and Inwon Lee    
In this study, deep neural network (DNN) and transfer learning (TL) techniques were employed to predict the viscous resistance and wake distribution based on the positions of flow control fins (FCFs) applied to containerships of various sizes. Both metho... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Gauri Vaidya, Meghana Kshirsagar and Conor Ryan    
Neural networks have revolutionised the way we approach problem solving across multiple domains; however, their effective design and efficient use of computational resources is still a challenging task. One of the most important factors influencing this ... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Ashir Javeed, Muhammad Asim Saleem, Ana Luiza Dallora, Liaqat Ali, Johan Sanmartin Berglund and Peter Anderberg    
Researchers have proposed several automated diagnostic systems based on machine learning and data mining techniques to predict heart failure. However, researchers have not paid close attention to predicting cardiac patient mortality. We developed a clini... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Tran Thanh Ngoc, Le Van Dai, Lam Binh Minh     Pág. 258 - 269
This study investigates data standardization methods based on the grid search (GS) algorithm for energy load forecasting, including zero-mean, min-max, max, decimal, sigmoid, softmax, median, and robust, to determine the hyperparameters of deep learning ... ver más
Revista: Advances in Technology Innovation    Formato: Electrónico

 
en línea
Roseline Oluwaseun Ogundokun, Sanjay Misra, Mychal Douglas, Robertas Dama?evicius and Rytis Maskeliunas    
In today?s healthcare setting, the accurate and timely diagnosis of breast cancer is critical for recovery and treatment in the early stages. In recent years, the Internet of Things (IoT) has experienced a transformation that allows the analysis of real-... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Nasir Ayub, Usman Ali, Kainat Mustafa, Syed Muhammad Mohsin and Sheraz Aslam    
In the smart grid (SG), user consumption data are increasing very rapidly. Some users consume electricity legally, while others steal it. Electricity theft causes significant damage to power grids, affects power supply efficiency, and reduces utility rev... ver más
Revista: Forecasting    Formato: Electrónico

 
en línea
Guglielmo Daddi, Nicolaus Notaristefano, Fabrizio Stesina and Sabrina Corpino    
This work considers global path planning enabled by generative adversarial networks (GANs) on a 2D grid world. These networks can learn statistical relationships between obstacles, goals, states, and paths. Given a previously unseen combination of obstac... ver más
Revista: Aerospace    Formato: Electrónico

 
en línea
Joseph Isabona, Agbotiname Lucky Imoize, Stephen Ojo, Olukayode Karunwi, Yongsung Kim, Cheng-Chi Lee and Chun-Ta Li    
Modern cellular communication networks are already being perturbed by large and steadily increasing mobile subscribers in high demand for better service quality. To constantly and reliably deploy and optimally manage such mobile cellular networks, the ra... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Andrea Menapace, Ariele Zanfei and Maurizio Righetti    
The evolution of smart water grids leads to new Big Data challenges boosting the development and application of Machine Learning techniques to support efficient and sustainable drinking water management. These powerful techniques rely on hyperparameters ... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Un-Chang Jeong    
This study proposes a classification method that uses the continuous wavelet transform and the support vector machine approach to classify refrigerant flow noises generated in an air conditioner. The air conditioning noise was identified as an abnormal s... ver más
Revista: Applied Sciences    Formato: Electrónico

« Anterior     Página: 1 de 1     Siguiente »