90   Artículos

 
en línea
Shiyuan Zhu, Yuwei Zhao and Shihong Yue    
Given a set of data objects, the fuzzy c-means (FCM) partitional clustering algorithm is favored due to easy implementation, rapid response, and feasible optimization. However, FCM fails to reflect either the importance degree of the individual data obje... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Yabin Tao and Ruixin Zhang    
Low-disturbance mining in surface mining (LDM) can transform traditional surface mine production systems into a more sustainable model by reducing the disturbance of surface mining, minimizing pollutant emissions, and reducing ecological impacts. The pur... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Zhi Quan, Hailong Zhang, Jiyu Luo and Haijun Sun    
Signal modulation recognition is often reliant on clustering algorithms. The fuzzy c-means (FCM) algorithm, which is commonly used for such tasks, often converges to local optima. This presents a challenge, particularly in low-signal-to-noise-ratio (SNR)... ver más
Revista: Information    Formato: Electrónico

 
en línea
Muhammad Nafees Ulfat Khan, Weiping Cao, Zhiling Tang, Ata Ullah and Wanghua Pan    
The rapid development of the Internet of Things (IoT) has opened the way for transformative advances in numerous fields, including healthcare. IoT-based healthcare systems provide unprecedented opportunities to gather patients? real-time data and make ap... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Chinyang Henry Tseng, Woei-Jiunn Tsaur and Yueh-Mao Shen    
In detecting large-scale attacks, deep neural networks (DNNs) are an effective approach based on high-quality training data samples. Feature selection and feature extraction are the primary approaches for data quality enhancement for high-accuracy intrus... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Yiming Tang, Rui Chen and Bowen Xia    
Nowadays, most fuzzy clustering algorithms are sensitive to the initialization results of clustering algorithms and have a weak ability to handle high-dimensional data. To solve these problems, we developed the viewpoint-driven subspace fuzzy c-means (VS... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Yellapragada Venkata Pavan Kumar, Sivakavi Naga Venkata Bramareswara Rao and Ramani Kannan    
The development of renewable-energy-based microgrids is being considered as a potential solution to lessen the unrelenting burden on the centralized utility grid. Furthermore, recent studies reveal that integrated multi-microgrid cluster systems develope... ver más
Revista: Urban Science    Formato: Electrónico

 
en línea
Barbara Cardone, Ferdinando Di Martino and Vittorio Miraglia    
Hot and cold spot identification is a spatial analysis technique used in various issues to identify regions where a specific phenomenon is either strongly or poorly concentrated or sensed. Many hot/cold spot detection techniques are proposed in literatur... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Dongyi Wang, Guoli Wang and Hang Wang    
Among so many autonomous driving technologies, autonomous lane changing is an important application scenario, which has been gaining increasing amounts of attention from both industry and academic communities because it can effectively reduce traffic con... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Amit Banerjee and Issam Abu-Mahfouz    
Fuzzy c-means (FCM), the fuzzy variant of the popular k-means, has been used for data clustering when cluster boundaries are not well defined. The choice of initial cluster prototypes (or the initialization of cluster memberships), and the fact that the ... ver más
Revista: Algorithms    Formato: Electrónico

« Anterior     Página: 1 de 5     Siguiente »