|
|
|
Ognjen Radovic,Srdan Marinkovic,Jelena Radojicic
Credit scoring attracts special attention of financial institutions. In recent years, deep learning methods have been particularly interesting. In this paper, we compare the performance of ensemble deep learning methods based on decision trees with the b...
ver más
|
|
|
|
|
|
|
Saeed Samadianfard, Salar Jarhan, Ely Salwana, Amir Mosavi, Shahaboddin Shamshirband and Shatirah Akib
Advancement in river flow prediction systems can greatly empower the operational river management to make better decisions, practices, and policies. Machine learning methods recently have shown promising results in building accurate models for river flow...
ver más
|
|
|
|
|
|
|
Haoran Liu, Kehui Xu, Bin Li, Ya Han and Guandong Li
Machine learning classifiers have been rarely used for the identification of seafloor sediment types in the rapidly changing dredge pits for coastal restoration. Our study uses multiple machine learning classifiers to identify the sediment types of the C...
ver más
|
|
|
|
|
|
|
Bahareh Kalantar, Husam A. H. Al-Najjar, Biswajeet Pradhan, Vahideh Saeidi, Alfian Abdul Halin, Naonori Ueda and Seyed Amir Naghibi
Assessment of the most appropriate groundwater conditioning factors (GCFs) is essential when performing analyses for groundwater potential mapping. For this reason, in this work, we look at three statistical factor analysis methods?Variance Inflation Fac...
ver más
|
|
|
|
|
|
|
M.H.J.P. Gunarathna, Kazuhito Sakai, Tamotsu Nakandakari, Kazuro Momii and M.K.N. Kumari
Poor data availability on soil hydraulic properties in tropical regions hampers many studies, including crop and environmental modeling. The high cost and effort of measurement and the increasing demand for such data have driven researchers to search for...
ver más
|
|
|
|
|
|
|
Zafer Adiguzel, Fatma Sonmez Cakir
Pág. 230 - 250
|
|
|
|
|
|
|
Juan Murillo-Morera, Carlos Castro-Herrera, Javier Arroyo, Ruben Fuentes-Fernandez
Pág. 114 - 137
Today, it is common for software projects to collect measurement data through development processes. With these data, defect prediction software can try to estimate the defect proneness of a software module, with the objective of assisting and guiding so...
ver más
|
|
|
|
|
|
|
Jose M. Bernal-de-Lázaro
Pág. 74 - 81
This article summarizes the main contributions of the PhD thesis titled: "Application of learning techniques based on kernel methods for the fault diagnosis in Industrial processes". This thesis focuses on the analysis and design of fault diagnosis syste...
ver más
|
|
|
|
|
|
|
Jiale Li, Jiayin Guo, Bo Li and Lingxin Meng
The deep learning method has been widely used in the engineering field. The availability of the training dataset is one of the most important limitations of the deep learning method. Accurate prediction of pavement performance plays a vital role in road ...
ver más
|
|
|
|
|
|
|
Huang Feng and Yu Zhang
Extensive research in predicting annual passenger throughput has been conducted, aiming at providing decision support for airport construction, aircraft procurement, resource management, flight scheduling, etc. However, how airport operational throughput...
ver más
|
|
|
|