1.827   Artículos

 
en línea
Yong Liu, Xiaohui Yan, Wenying Du, Tianqi Zhang, Xiaopeng Bai and Ruichuan Nan    
The current work proposes a novel super-resolution convolutional transposed network (SRCTN) deep learning architecture for downscaling daily climatic variables. The algorithm was established based on a super-resolution convolutional neural network with t... ver más
Revista: Water    Formato: Electrónico

 
en línea
Alvaro A. Teran-Quezada, Victor Lopez-Cabrera, Jose Carlos Rangel and Javier E. Sanchez-Galan    
Convolutional neural networks (CNN) have provided great advances for the task of sign language recognition (SLR). However, recurrent neural networks (RNN) in the form of long?short-term memory (LSTM) have become a means for providing solutions to problem... ver más
Revista: Big Data and Cognitive Computing    Formato: Electrónico

 
en línea
Ancilon Leuch Alencar, Marcelo Dornbusch Lopes, Anita Maria da Rocha Fernandes, Julio Cesar Santos dos Anjos, Juan Francisco De Paz Santana and Valderi Reis Quietinho Leithardt    
In the current era of social media, the proliferation of images sourced from unreliable origins underscores the pressing need for robust methods to detect forged content, particularly amidst the rapid evolution of image manipulation technologies. Existin... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Ching-Lung Fan    
The emergence of deep learning-based classification methods has led to considerable advancements and remarkable performance in image recognition. This study introduces the Multiscale Feature Convolutional Neural Network (MSFCNN) for the extraction of com... ver más
Revista: ISPRS International Journal of Geo-Information    Formato: Electrónico

 
en línea
Shaoyan Zuo, Dazhi Wang, Xiao Wang, Liujia Suo, Shuaiwu Liu, Yongqing Zhao and Dewang Liu    
In this study, a deep learning network for extracting spatial-temporal features is proposed to estimate significant wave height (???? H s ) and wave period (???? T s ) from X-band marine radar images. Since the shore-based radar image in this study is in... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Diya Wang, Yonglin Zhang, Lixin Wu, Yupeng Tai, Haibin Wang, Jun Wang, Fabrice Meriaudeau and Fan Yang    
In recent years, the study of deep learning techniques for underwater acoustic channel estimation has gained widespread attention. However, existing neural network channel estimation methods often overfit to training dataset noise levels, leading to dimi... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Che-Hao Chang, Jason Lin, Jia-Wei Chang, Yu-Shun Huang, Ming-Hsin Lai and Yen-Jen Chang    
Recently, data-driven approaches have become the dominant solution for prediction problems in agricultural industries. Several deep learning models have been applied to crop yield prediction in smart farming. In this paper, we proposed an efficient hybri... ver más
Revista: Agriculture    Formato: Electrónico

 
en línea
Oscar Leonardo García-Navarrete, Oscar Santamaria, Pablo Martín-Ramos, Miguel Ángel Valenzuela-Mahecha and Luis Manuel Navas-Gracia    
Corn (Zea mays L.) is one of the most important cereals worldwide. To maintain crop productivity, it is important to eliminate weeds that compete for nutrients and other resources. The eradication of these causes environmental problems through the use of... ver más
Revista: Agriculture    Formato: Electrónico

 
en línea
Ying Chen, Xi Qiao, Feng Qin, Hongtao Huang, Bo Liu, Zaiyuan Li, Conghui Liu, Quan Wang, Fanghao Wan, Wanqiang Qian and Yiqi Huang    
Invasive plant species pose significant biodiversity and ecosystem threats. Real-time identification of invasive plants is a crucial prerequisite for early and timely prevention. While deep learning has shown promising results in plant recognition, the u... ver más
Revista: Agronomy    Formato: Electrónico

 
en línea
Zhiqing Guo, Xiaohui Chen, Ming Li, Yucheng Chi and Dongyuan Shi    
Peanut leaf spot is a worldwide disease whose prevalence poses a major threat to peanut yield and quality, and accurate prediction models are urgently needed for timely disease management. In this study, we proposed a novel peanut leaf spot prediction me... ver más
Revista: Agronomy    Formato: Electrónico

« Anterior     Página: 1 de 107     Siguiente »