|
|
|
Xie Lian, Xiaolong Hu, Liangsheng Shi, Jinhua Shao, Jiang Bian and Yuanlai Cui
The parameters of the GR4J-CemaNeige coupling model (GR4neige) are typically treated as constants. However, the maximum capacity of the production store (parX1) exhibits time-varying characteristics due to climate variability and vegetation coverage chan...
ver más
|
|
|
|
|
|
|
Konstantinos Psychogyios, Andreas Papadakis, Stavroula Bourou, Nikolaos Nikolaou, Apostolos Maniatis and Theodore Zahariadis
The advent of computer networks and the internet has drastically altered the means by which we share information and interact with each other. However, this technological advancement has also created opportunities for malevolent behavior, with individual...
ver más
|
|
|
|
|
|
|
Ge Yan, Guoan Tang, Dingyang Lu, Junfei Ma, Xin Yang and Fayuan Li
The intervalley plain is an important type of landform for mapping, and it has good connectivity for urban construction and development on the Loess Plateau. During the global landform mapping of the Deep-time Digital Earth (DDE) Big Science Program, it ...
ver más
|
|
|
|
|
|
|
Ilia Zaznov, Julian Martin Kunkel, Atta Badii and Alfonso Dufour
This paper introduces a novel deep learning approach for intraday stock price direction prediction, motivated by the need for more accurate models to enable profitable algorithmic trading. The key problems addressed are effectively modelling complex limi...
ver más
|
|
|
|
|
|
|
Mihael Gudlin, Miro Hegedic, Matija Golec and Davor Kolar
In the quest for industrial efficiency, human performance within manufacturing systems remains pivotal. Traditional time study methods, reliant on direct observation and manual video analysis, are increasingly inadequate, given technological advancements...
ver más
|
|
|
|
|
|
|
Shurong Peng, Lijuan Guo, Haoyu Huang, Xiaoxu Liu and Jiayi Peng
The integration of large-scale wind power into the power grid threatens the stable operation of the power system. Traditional wind power prediction is based on time series without considering the variability between wind turbines in different locations. ...
ver más
|
|
|
|
|
|
|
Ligang Yuan, Jing Liu, Haiyan Chen, Daoming Fang and Wenlu Chen
Scene taxiing time is an important indicator for assessing the operational efficiency of airports as well as green airports, and it is also a fundamental parameter in flight regularity statistics. The accurate prediction of taxiing time can help decision...
ver más
|
|
|
|
|
|
|
Xing Yang, Bin Fu, Xiaochuan Ma, Yu Liu, Dongyu Yuan and Xintong Wu
The current paper verifies the asynchronous ??8
H
8
control and optimization problem for flight vehicles with a time-varying delay. The nonlinear dynamic model and Jacobian linearization establish the flight vehicle?s switched model. An asynchronous ??8...
ver más
|
|
|
|
|
|
|
Alya Alshammari and Khalil El Hindi
The combination of collaborative deep learning and Cyber-Physical Systems (CPSs) has the potential to improve decision-making, adaptability, and efficiency in dynamic and distributed environments. However, it brings privacy, communication, and resource r...
ver más
|
|
|
|
|
|
|
Konstantinos Dolaptsis, Xanthoula Eirini Pantazi, Charalampos Paraskevas, Selçuk Arslan, Yücel Tekin, Bere Benjamin Bantchina, Yahya Ulusoy, Kemal Sulhi Gündogdu, Muhammad Qaswar, Danyal Bustan and Abdul Mounem Mouazen
Irrigation plays a crucial role in maize cultivation, as watering is essential for optimizing crop yield and quality, particularly given maize?s sensitivity to soil moisture variations. In the current study, a hybrid Long Short-Term Memory (LSTM) approac...
ver más
|
|
|
|