18   Artículos

 
en línea
Junfang Fan, Denghui Dou and Yi Ji    
In this study, two different impact-angle-constrained guidance and control strategies using deep reinforcement learning (DRL) are proposed. The proposed strategies are based on the dual-loop and integrated guidance and control types. To address comprehen... ver más
Revista: Aerospace    Formato: Electrónico

 
en línea
Yao-Liang Chung    
Against the backdrop of rising road traffic accident rates, measures to prevent road traffic accidents have always been a pressing issue in Taiwan. Road traffic accidents are mostly caused by speeding and roadway obstacles, especially in the form of rock... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Xiaotong Cui, Hongxin Zhang, Xing Fang, Yuanzhen Wang, Danzhi Wang, Fan Fan and Lei Shu    
The leakage signals, including electromagnetic, energy, time, and temperature, generated during the operation of password devices contain highly correlated key information, which leads to security vulnerabilities. In traditional encryption algorithms, th... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Wilfried Wöber, Lars Mehnen, Manuel Curto, Papius Dias Tibihika, Genanaw Tesfaye and Harald Meimberg    
The biological investigation of a population?s shape diversity using digital images is typically reliant on geometrical morphometrics, which is an approach based on user-defined landmarks. In contrast to this traditional approach, the progress in deep le... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Changan Wei, Qiqi Li, Ji Xu, Jingli Yang and Shouda Jiang    
Deep learning is widely used in vision tasks, but feature extraction of IR small targets is difficult due to the inconspicuous contours and lack of color information. This paper proposes a new convolutional neural network?based (CNN-based) method for IR ... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Yufeng Huang, Jun Tao, Gang Sun, Hao Zhang and Yan Hu    
In this study, a prognostics and health management (PHM) framework is proposed for aero-engines, which combines a dynamic probability (DP) model and a long short-term memory neural network (LSTM). A DP model based on Gaussian mixture model-adaptive densi... ver más
Revista: Aerospace    Formato: Electrónico

 
en línea
Sabastian Simbarashe Mukonza and Jie-Lun Chiang    
Water temperature is an important indicator of water quality for surface water resources because it impacts solubility of dissolved gases in water, affects metabolic rates of aquatic inhabitants, such as fish and harmful algal blooms (HABs), and determin... ver más
Revista: Water    Formato: Electrónico

 
en línea
Ilias Lazarou, Anastasios L. Kesidis, George Hloupis and Andreas Tsatsaris    
It is common sense that immediate response and action are among the most important terms when it comes to public safety, and emergency response systems (ERS) are technology components strictly tied to this purpose. While the use of ERSs is increasingly a... ver más
Revista: ISPRS International Journal of Geo-Information    Formato: Electrónico

 
en línea
Zhengmao Chen, Dongyue Guo and Yi Lin    
In this work, a deep Gaussian process (DGP) based framework is proposed to improve the accuracy of predicting flight trajectory in air traffic research, which is further applied to implement a probabilistic conflict detection algorithm. The Gaussian dist... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Rina Komatsu and Tad Gonsalves    
Digital images often become corrupted by undesirable noise during the process of acquisition, compression, storage, and transmission. Although the kinds of digital noise are varied, current denoising studies focus on denoising only a single and specific ... ver más
Revista: AI    Formato: Electrónico

« Anterior     Página: 1 de 1     Siguiente »