|
|
|
Fahim Sufi
GPT (Generative Pre-trained Transformer) represents advanced language models that have significantly reshaped the academic writing landscape. These sophisticated language models offer invaluable support throughout all phases of research work, facilitatin...
ver más
|
|
|
|
|
|
|
Leon Kopitar, Iztok Fister, Jr. and Gregor Stiglic
Introduction: Type 2 diabetes mellitus is a major global health concern, but interpreting machine learning models for diagnosis remains challenging. This study investigates combining association rule mining with advanced natural language processing to im...
ver más
|
|
|
|
|
|
|
Jin-Woo Kong, Byoung-Doo Oh, Chulho Kim and Yu-Seop Kim
Intracerebral hemorrhage (ICH) is a severe cerebrovascular disorder that poses a life-threatening risk, necessitating swift diagnosis and treatment. While CT scans are the most effective diagnostic tool for detecting cerebral hemorrhage, their interpreta...
ver más
|
|
|
|
|
|
|
Mazen A. Al-Sinan, Abdulaziz A. Bubshait and Zainab Aljaroudi
Recent advancements in machine learning (ML) applications have set the stage for the development of autonomous construction project scheduling systems. This study presents a blueprint to demonstrate how construction project schedules can be generated aut...
ver más
|
|
|
|
|
|
|
Tamim Mahmud Al-Hasan, Aya Nabil Sayed, Faycal Bensaali, Yassine Himeur, Iraklis Varlamis and George Dimitrakopoulos
Recommender systems are a key technology for many applications, such as e-commerce, streaming media, and social media. Traditional recommender systems rely on collaborative filtering or content-based filtering to make recommendations. However, these appr...
ver más
|
|
|
|
|
|
|
Zhe Yang, Yi Huang, Yaqin Chen, Xiaoting Wu, Junlan Feng and Chao Deng
Controllable Text Generation (CTG) aims to modify the output of a Language Model (LM) to meet specific constraints. For example, in a customer service conversation, responses from the agent should ideally be soothing and address the user?s dissatisfactio...
ver más
|
|
|
|
|
|
|
Baskhad Idrisov and Tim Schlippe
Our paper compares the correctness, efficiency, and maintainability of human-generated and AI-generated program code. For that, we analyzed the computational resources of AI- and human-generated program code using metrics such as time and space complexit...
ver más
|
|
|
|
|
|
|
Aniket Kumar Singh, Bishal Lamichhane, Suman Devkota, Uttam Dhakal and Chandra Dhakal
This study investigates self-assessment tendencies in Large Language Models (LLMs), examining if patterns resemble human cognitive biases like the Dunning?Kruger effect. LLMs, including GPT, BARD, Claude, and LLaMA, are evaluated using confidence scores ...
ver más
|
|
|
|
|
|
|
Chanjun Park, Seonmin Koo, Gyeongmin Kim and Heuiseok Lim
In this study, we conduct a pioneering and comprehensive examination of ChatGPT?s (GPT-3.5 Turbo) capabilities within the realm of Korean Grammatical Error Correction (K-GEC). Given the Korean language?s agglutinative nature and its rich linguistic intri...
ver más
|
|
|
|
|
|
|
Moatsum Alawida, Bayan Abu Shawar, Oludare Isaac Abiodun, Abid Mehmood, Abiodun Esther Omolara and Ahmad K. Al Hwaitat
The Chat Generative Pre-training Transformer (GPT), also known as ChatGPT, is a powerful generative AI model that can simulate human-like dialogues across a variety of domains. However, this popularity has attracted the attention of malicious actors who ...
ver más
|
|
|
|