28   Artículos

 
en línea
Chengyang Peng, Shaohua Jin, Gang Bian, Yang Cui and Meina Wang    
The scarcity and difficulty in acquiring Side-scan sonar target images limit the application of deep learning algorithms in Side-scan sonar target detection. At present, there are few amplification methods for Side-scan sonar images, and the amplificatio... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Jier Xi and Xiufen Ye    
There are many challenges in using side-scan sonar (SSS) images to detect objects. The challenge of object detection and recognition in sonar data is greater than in optical images due to the sparsity of detectable targets. The complexity of real-world u... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Xishuang Li, Lejun Liu, Bigui Huang, Qingjie Zhou and Chengyi Zhang    
Autonomous Underwater Vehicle (AUV)-based multibeam bathymetry, sub-bottom profiles, and side-scan sonar images were collected in 2009 and 2010 to map the geomorphic features along the axial zone of a canyon (referred to as C4) within the canyon system d... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Ruoyu Chen and Ying Chen    
To detect a desired underwater target quickly and precisely, a real-time sonar-based target detection system mounted on an autonomous underwater helicopter (AUH) using an improved convolutional neural network (CNN) is proposed in this paper. YOLOv5 is in... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Won Shin, Da-Sol Kim and Hyunsuk Ko    
In submarine warfare systems, passive SONAR is commonly used to detect enemy targets while concealing one?s own submarine. The bearing information of a target obtained from passive SONAR can be accumulated over time and visually represented as a two-dime... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Feihu Zhang, Wei Zhang, Chensheng Cheng, Xujia Hou and Chun Cao    
Deep learning-based object detection methods have demonstrated remarkable effectiveness across various domains. Recently, there has been growing interest in applying these techniques to underwater environments. Conventional optical imaging methods face s... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Wenhan Gao, Shanmin Zhou, Shuo Liu, Tao Wang, Bingbing Zhang, Tian Xia, Yong Cai and Jianxing Leng    
Sonar images have the characteristics of lower resolution and blurrier edges compared to optical images, which make the feature-matching method in underwater target tracking less robust. To solve this problem, we propose a particle filter (PF)-based unde... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Ana Rita Gaspar and Aníbal Matos    
Some structures in the harbour environment need to be inspected regularly. However, these scenarios present a major challenge for the accurate estimation of a vehicle?s position and subsequent recognition of similar images. In these scenarios, visibility... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Jian Cheng, Liang Cheng, Sensen Chu, Jizhe Li, Qixin Hu, Li Ye, Zhiyong Wang and Hui Chen    
Satellite-derived bathymetry (SDB) techniques are increasingly valuable for deriving high-quality bathymetric maps of coral reefs. Investigating the performance of the related SDB algorithms in purely spaceborne active?passive fusion bathymetry contribut... ver más
Revista: ISPRS International Journal of Geo-Information    Formato: Electrónico

 
en línea
Won-Ki Kim, Ho Seuk Bae, Su-Uk Son and Joung-Soo Park    
Recently, neural network-based deep learning techniques have been actively applied to detect underwater objects in sonar (sound navigation and ranging) images. However, unlike optical images, acquiring sonar images is extremely time- and cost-intensive, ... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

« Anterior     Página: 1 de 3     Siguiente »