31   Artículos

 
en línea
Eleni Vlachou, Aristeidis Karras, Christos Karras, Leonidas Theodorakopoulos, Constantinos Halkiopoulos and Spyros Sioutas    
In this work, we present a Distributed Bayesian Inference Classifier for Large-Scale Systems, where we assess its performance and scalability on distributed environments such as PySpark. The presented classifier consistently showcases efficient inference... ver más
Revista: Big Data and Cognitive Computing    Formato: Electrónico

 
en línea
Aristeidis Karras, Anastasios Giannaros, Christos Karras, Leonidas Theodorakopoulos, Constantinos S. Mammassis, George A. Krimpas and Spyros Sioutas    
In the context of the Internet of Things (IoT), Tiny Machine Learning (TinyML) and Big Data, enhanced by Edge Artificial Intelligence, are essential for effectively managing the extensive data produced by numerous connected devices. Our study introduces ... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Aristeidis Karras, Christos Karras, Konstantinos C. Giotopoulos, Dimitrios Tsolis, Konstantinos Oikonomou and Spyros Sioutas    
Federated learning (FL) has emerged as a promising technique for preserving user privacy and ensuring data security in distributed machine learning contexts, particularly in edge intelligence and edge caching applications. Recognizing the prevalent chall... ver más
Revista: Information    Formato: Electrónico

 
en línea
Aristeidis Karras, Christos Karras, Nikolaos Schizas, Markos Avlonitis and Spyros Sioutas    
The field of automated machine learning (AutoML) has gained significant attention in recent years due to its ability to automate the process of building and optimizing machine learning models. However, the increasing amount of big data being generated ha... ver más
Revista: Information    Formato: Electrónico

 
en línea
Christos Karras, Aristeidis Karras, Konstantinos C. Giotopoulos, Markos Avlonitis and Spyros Sioutas    
In the context of big-data analysis, the clustering technique holds significant importance for the effective categorization and organization of extensive datasets. However, pinpointing the ideal number of clusters and handling high-dimensional data can b... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Konstantinos C. Giotopoulos, Dimitrios Michalopoulos, Aristeidis Karras, Christos Karras and Spyros Sioutas    
Human resource management has a significant influence on the performance of any public body. Employee classification and ranking are definitely time-consuming processes, which in many cases lead to controversial results. In addition, assessing employee e... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Aristeidis Karras, Christos Karras, Spyros Sioutas, Christos Makris, George Katselis, Ioannis Hatzilygeroudis, John A. Theodorou and Dimitrios Tsolis    
This study explores the design and capabilities of a Geographic Information System (GIS) incorporated with an expert knowledge system, tailored for tracking and monitoring the spread of dangerous diseases across a collection of fish farms. Specifically t... ver más
Revista: Information    Formato: Electrónico

 
en línea
Nikolaos Schizas, Aristeidis Karras, Christos Karras and Spyros Sioutas    
The rapid emergence of low-power embedded devices and modern machine learning (ML) algorithms has created a new Internet of Things (IoT) era where lightweight ML frameworks such as TinyML have created new opportunities for ML algorithms running within ed... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Spyros Sioutas, Efrosini Sourla, Kostas Tsichlas, Gerasimos Vonitsanos and Christos Zaroliagis    
In this work, we propose ??3 D 3 -Tree, a dynamic distributed deterministic structure for data management in decentralized networks, by engineering and extending an existing decentralized structure. Conducting an extensive experimental study, we verify t... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Christina Koutroumpina, Spyros Sioutas, Stelios Koutroubinas and Kostas Tsichlas    
The problem of energy disaggregation is the separation of an aggregate energy signal into the consumption of individual appliances in a household. This is useful, since the goal of energy efficiency at the household level can be achieved through energy-s... ver más
Revista: Algorithms    Formato: Electrónico

« Anterior     Página: 1 de 2     Siguiente »