|
|
|
Wen Tian, Yining Zhang, Ying Zhang, Haiyan Chen and Weidong Liu
To fully leverage the spatiotemporal dynamic correlations in air traffic flow and enhance the accuracy of traffic flow prediction models, thereby providing a more precise basis for perceiving congestion situations in the air route network, a study was co...
ver más
|
|
|
|
|
|
|
Xiaojuan Wang and Weilan Wang
As there is a lack of public mark samples of Tibetan historical document image characters at present, this paper proposes an unsupervised Tibetan historical document character recognition method based on deep learning (UD-CNN). Firstly, using the Tibetan...
ver más
|
|
|
|
|
|
|
Yuntao Shi, Qi Luo, Meng Zhou, Wei Guo, Jie Li, Shuqin Li and Yu Ding
Objects thrown from tall buildings in communities are characterized by their small size, inconspicuous features, and high speed. Existing algorithms for detecting such objects face challenges, including excessive parameters, overly complex models that ar...
ver más
|
|
|
|
|
|
|
Pengfei Zhao and Ze Liu
The three-dimensional (3D) reconstruction of Electromagnetic Tomography (EMT) is an important task for many applications, such as the non-destructive testing of inner defects in rail systems. Additionally, image reconstruction algorithms utilizing deep l...
ver más
|
|
|
|
|
|
|
Ruoyang Li, Shuping Xiong, Yinchao Che, Lei Shi, Xinming Ma and Lei Xi
Semantic segmentation algorithms leveraging deep convolutional neural networks often encounter challenges due to their extensive parameters, high computational complexity, and slow execution. To address these issues, we introduce a semantic segmentation ...
ver más
|
|
|
|
|
|
|
Monika Rybczak and Krystian Kozakiewicz
Today, specific convolution neural network (CNN) models assigned to specific tasks are often used. In this article, the authors explored three models: MobileNet, EfficientNetB0, and InceptionV3 combined. The authors were interested in investigating how q...
ver más
|
|
|
|
|
|
|
Chenhong Yan, Shefeng Yan, Tianyi Yao, Yang Yu, Guang Pan, Lu Liu, Mou Wang and Jisheng Bai
Ship-radiated noise classification is critical in ocean acoustics. Recently, the feature extraction method combined with time?frequency spectrograms and convolutional neural networks (CNNs) has effectively described the differences between various underw...
ver más
|
|
|
|
|
|
|
Qingyong Zhang, Lingfeng Zhou, Yixin Su, Huiwen Xia and Bingrong Xu
Considering the spatial and temporal correlation of traffic flow data is essential to improve the accuracy of traffic flow prediction. This paper proposes a traffic flow prediction model named Dual Spatial Convolution Gated Recurrent Unit (DSC-GRU). In p...
ver más
|
|
|
|
|
|
|
Zhuangzhuang Yang, Chengxin Pang and Xinhua Zeng
Predicting the future trajectories of multiple agents is essential for various applications in real life, such as surveillance systems, autonomous driving, and social robots. The trajectory prediction task is influenced by many factors, including individ...
ver más
|
|
|
|
|
|
|
Qingqing Hong, Xinyi Zhong, Weitong Chen, Zhenghua Zhang and Bin Li
Hyperspectral images (HSIs) are pivotal in various fields due to their rich spectral?spatial information. While convolutional neural networks (CNNs) have notably enhanced HSI classification, they often generate redundant spatial features. To address this...
ver más
|
|
|
|