28   Artículos

 
en línea
Yugen Yi, Haoming Zhang, Ningyi Zhang, Wei Zhou, Xiaomei Huang, Gengsheng Xie and Caixia Zheng    
As the feature dimension of data continues to expand, the task of selecting an optimal subset of features from a pool of limited labeled data and extensive unlabeled data becomes more and more challenging. In recent years, some semi-supervised feature se... ver más
Revista: Information    Formato: Electrónico

 
en línea
Tushar Ganguli and Edwin K. P. Chong    
We present a novel technique for pruning called activation-based pruning to effectively prune fully connected feedforward neural networks for multi-object classification. Our technique is based on the number of times each neuron is activated during model... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Yi Wang, Yating Xu, Tianjian Li, Tao Zhang and Jian Zou    
Image deblurring based on sparse regularization has garnered significant attention, but there are still certain limitations that need to be addressed. For instance, convex sparse regularization tends to exhibit biased estimation, which can adversely impa... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Mattia Zanon, Giuliano Zambonin, Gian Antonio Susto and Seán McLoone    
In knowledge-based systems, besides obtaining good output prediction accuracy, it is crucial to understand the subset of input variables that have most influence on the output, with the goal of gaining deeper insight into the underlying process. These re... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Florin Ilarion Miertoiu and Bogdan Dumitrescu    
In this paper, the Feasibility Pump is adapted for the problem of sparse representations of signals affected by Gaussian noise. This adaptation is tested and then compared to Orthogonal Matching Pursuit (OMP) and the Fast Iterative Shrinkage-Thresholding... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Xiaobin Yuan, Jingping Zhu and Xiaobin Li    
Blind image deblurring tries to recover a sharp version from a blurred image, where blur kernel is usually unknown. Recently, sparse representation has been successfully applied to estimate the blur kernel. However, the sparse representation has not cons... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Shuting Cai, Qilun Luo, Ming Yang, Wen Li and Mingqing Xiao    
Tensor Robust Principal Component Analysis (TRPCA) plays a critical role in handling high multi-dimensional data sets, aiming to recover the low-rank and sparse components both accurately and efficiently. In this paper, different from current approach, w... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Fan Lin, Yingpin Chen, Yuqun Chen and Fei Yu    
Image deblurring under the background of impulse noise is a typically ill-posed inverse problem which attracted great attention in the fields of image processing and computer vision. The fast total variation deconvolution (FTVd) algorithm proved to be an... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Di Guo, Zhangren Tu, Jiechao Wang, Min Xiao, Xiaofeng Du and Xiaobo Qu    
Images may be corrupted by salt and pepper impulse noise during image acquisitions or transmissions. Although promising denoising performances have been recently obtained with sparse representations, how to restore high-quality images remains challenging... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Dong Li and Lei Gong    
Sensor alignment plays a key role in the accurate estimation of the ballistic trajectory. A sparse regularization-based sensor alignment method coupled with the selection of a regularization parameter is proposed in this paper. The sparse regularization ... ver más
Revista: Information    Formato: Electrónico

« Anterior     Página: 1 de 2     Siguiente »