184   Artículos

 
en línea
Yuanyuan Shao, Shengheng Ji, Guantao Xuan, Yanyun Ren, Wenjie Feng, Huijie Jia, Qiuyun Wang and Shuguo He    
The objective is to develop a portable device capable of promptly identifying root rot in the field. This study employs hyperspectral imaging technology to detect root rot by analyzing spectral variations in chili pepper leaves during times of health, in... ver más
Revista: Agronomy    Formato: Electrónico

 
en línea
Wangyang Li, Youzhen Xiang, Xiaochi Liu, Zijun Tang, Xin Wang, Xiangyang Huang, Hongzhao Shi, Mingjie Chen, Yujie Duan, Liaoyuan Ma, Shiyun Wang, Yifang Zhao, Zhijun Li and Fucang Zhang    
Applying hyperspectral remote sensing technology to the prediction of soil moisture content (SMC) during the growth stage of soybean emerges as an effective approach, imperative for advancing the development of modern precision agriculture. This investig... ver más
Revista: Agronomy    Formato: Electrónico

 
en línea
Dthenifer Cordeiro Santana, Gustavo de Faria Theodoro, Ricardo Gava, João Lucas Gouveia de Oliveira, Larissa Pereira Ribeiro Teodoro, Izabela Cristina de Oliveira, Fábio Henrique Rojo Baio, Carlos Antonio da Silva Junior, Job Teixeira de Oliveira and Paulo Eduardo Teodoro    
Using multispectral sensors attached to unmanned aerial vehicles (UAVs) can assist in the collection of morphological and physiological information from several crops. This approach, also known as high-throughput phenotyping, combined with data processin... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Dongxue Zhao, Yingli Cao, Jinpeng Li, Qiang Cao, Jinxuan Li, Fuxu Guo, Shuai Feng and Tongyu Xu    
Leaf blast is recognized as one of the most devastating diseases affecting rice production in the world, seriously threatening rice yield. Therefore, early detection of leaf blast is extremely important to limit the spread and propagation of the disease.... ver más
Revista: Agronomy    Formato: Electrónico

 
en línea
Adriano Mancini, Francesco Solfanelli, Luca Coviello, Francesco Maria Martini, Serena Mandolesi and Raffaele Zanoli    
Yield prediction is a crucial activity in scheduling agronomic operations and in informing the management and financial decisions of a wide range of stakeholders of the organic durum wheat supply chain. This research aims to develop a yield forecasting s... ver más
Revista: Agronomy    Formato: Electrónico

 
en línea
Leonardo Pinto de Magalhães and Fabrício Rossi    
In the cultivation of maize, the leaf area index (LAI) serves as an important metric to determine the development of the plant. Unmanned aerial vehicles (UAVs) that capture RGB images, along with random forest regression (RFR), can be used to indirectly ... ver más
Revista: Agronomy    Formato: Electrónico

 
en línea
Omnia H. Salem and Zhonghua Jia    
Detecting and monitoring changes in soil salinity through remote sensing provides an opportunity for field assessment in regions where on-site measurements are limited. This research, conducted in Siwa Oasis, Egypt, aimed to assess the effectiveness of r... ver más
Revista: Agronomy    Formato: Electrónico

 
en línea
Sadia Alam Shammi, Yanbo Huang, Gary Feng, Haile Tewolde, Xin Zhang, Johnie Jenkins and Mark Shankle    
The application of remote sensing, which is non-destructive and cost-efficient, has been widely used in crop monitoring and management. This study used a built-in multispectral imager on a small unmanned aerial vehicle (UAV) to capture multispectral imag... ver más
Revista: Agronomy    Formato: Electrónico

 
en línea
Sergio Vélez, Enrique Barajas, José Antonio Rubio, Dimas Pereira-Obaya and José Ramón Rodríguez-Pérez    
This study explores spectroscopy in the 350 to 2500 nm range for detecting powdery mildew (Erysiphe necator) in grapevine leaves, crucial for precision agriculture and sustainable vineyard management. In a controlled experimental vineyard setting, the sp... ver más
Revista: Agronomy    Formato: Electrónico

 
en línea
Jiangtao Ji, Xiaofei Wang, Hao Ma, Fengxun Zheng, Yi Shi, Hongwei Cui and Shaoshuai Zhao    
Chlorophyll a and b content (Cab) and leaf area index (LAI) are two key parameters of crops, and their quantitative inversions are important for growth monitoring and the field management of wheat. However, due to the close correlation between the spectr... ver más
Revista: Agronomy    Formato: Electrónico

« Anterior     Página: 1 de 12     Siguiente »