29   Artículos

 
en línea
Shiyuan Zhu, Yuwei Zhao and Shihong Yue    
Given a set of data objects, the fuzzy c-means (FCM) partitional clustering algorithm is favored due to easy implementation, rapid response, and feasible optimization. However, FCM fails to reflect either the importance degree of the individual data obje... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Zhi Quan, Hailong Zhang, Jiyu Luo and Haijun Sun    
Signal modulation recognition is often reliant on clustering algorithms. The fuzzy c-means (FCM) algorithm, which is commonly used for such tasks, often converges to local optima. This presents a challenge, particularly in low-signal-to-noise-ratio (SNR)... ver más
Revista: Information    Formato: Electrónico

 
en línea
Yiming Tang, Rui Chen and Bowen Xia    
Nowadays, most fuzzy clustering algorithms are sensitive to the initialization results of clustering algorithms and have a weak ability to handle high-dimensional data. To solve these problems, we developed the viewpoint-driven subspace fuzzy c-means (VS... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Amit Banerjee and Issam Abu-Mahfouz    
Fuzzy c-means (FCM), the fuzzy variant of the popular k-means, has been used for data clustering when cluster boundaries are not well defined. The choice of initial cluster prototypes (or the initialization of cluster memberships), and the fact that the ... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Mahshid Khazaeiathar, Reza Hadizadeh, Nasrin Fathollahzadeh Attar and Britta Schmalz    
The behavior of hydrological processes is periodic and stochastic due to the influence of climatic factors. Therefore, it is crucial to develop the models based on their periodicity and stochastic nature for prediction. Furthermore, forecasting the strea... ver más
Revista: Water    Formato: Electrónico

 
en línea
Bing Yang, Sensen Wu and Zhen Yan    
Food security has been one of the greatest global concerns facing the current complicated situation. Among these, the impact of climate change on agricultural production is dynamic over time and space, making it a major challenge to food security. Taking... ver más
Revista: ISPRS International Journal of Geo-Information    Formato: Electrónico

 
en línea
Ligang Yuan, Yang Zeng, Haiyan Chen and Jiazhi Jin    
In order to quantify the degree of influence of weather on traffic situations in real time, this paper proposes a terminal traffic situation prediction model under the influence of weather (TSPM-W) based on deep learning approaches. First, a feature set ... ver más
Revista: Aerospace    Formato: Electrónico

 
en línea
Tran Dinh Khang, Manh-Kien Tran and Michael Fowler    
Clustering is an unsupervised machine learning method with many practical applications that has gathered extensive research interest. It is a technique of dividing data elements into clusters such that elements in the same cluster are similar. Clustering... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Jianjie Sun, Xi Chen, Zhengwu Fu and Giuseppe Lacidogna    
In this study, the clustering method of the concrete matrix rupture and rubber fracture damages as well as the prediction of the ultimate load of crumb rubber concrete using the acoustic emission (AE) technique were investigated. The loading environment ... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Md Shahariar Alam, Md Mahbubur Rahman, Mohammad Amazad Hossain, Md Khairul Islam, Kazi Mowdud Ahmed, Khandaker Takdir Ahmed, Bikash Chandra Singh and Md Sipon Miah    
In recent decades, human brain tumor detection has become one of the most challenging issues in medical science. In this paper, we propose a model that includes the template-based K means and improved fuzzy C means (TKFCM) algorithm for detecting human b... ver más
Revista: Big Data and Cognitive Computing    Formato: Electrónico

« Anterior     Página: 1 de 2     Siguiente »