|
|
|
Arturs Kempelis, Inese Polaka, Andrejs Romanovs and Antons Patlins
Urban agriculture presents unique challenges, particularly in the context of microclimate monitoring, which is increasingly important in food production. This paper explores the application of convolutional neural networks (CNNs) to forecast key sensor m...
ver más
|
|
|
|
|
|
|
Anik Baul, Gobinda Chandra Sarker, Prokash Sikder, Utpal Mozumder and Ahmed Abdelgawad
Short-term load forecasting (STLF) plays a crucial role in the planning, management, and stability of a country?s power system operation. In this study, we have developed a novel approach that can simultaneously predict the load demand of different regio...
ver más
|
|
|
|
|
|
|
Zhiqiang Jiang, Yongyan Ma and Weijia Li
Accurate forecasting of ship motion is of great significance for ensuring maritime operational safety and working efficiency. A data-driven ship motion forecast method is proposed in this paper, aiming at the problems of low generalization of a single fo...
ver más
|
|
|
|
|
|
|
Mykhailo Lohachov, Ryoji Korei, Kazuo Oki, Koshi Yoshida, Issaku Azechi, Salem Ibrahim Salem and Nobuyuki Utsumi
This article investigates approaches for broccoli harvest time prediction through the application of various machine learning models. This study?s experiment is conducted on a commercial farm in Ecuador, and it integrates in situ weather and broccoli gro...
ver más
|
|
|
|
|
|
|
Pavel V. Matrenin, Valeriy V. Gamaley, Alexandra I. Khalyasmaa and Alina I. Stepanova
Forecasting the generation of solar power plants (SPPs) requires taking into account meteorological parameters that influence the difference between the solar irradiance at the top of the atmosphere calculated with high accuracy and the solar irradiance ...
ver más
|
|
|
|
|
|
|
Benjamin Burrichter, Juliana Koltermann da Silva, Andre Niemann and Markus Quirmbach
This study employs a temporal fusion transformer (TFT) for predicting overflow from sewer manholes during heavy rainfall events. The TFT utilised is capable of forecasting overflow hydrographs at the manhole level and was tested on a sewer network with 9...
ver más
|
|
|
|
|
|
|
Eunju Hwang
Daily data on COVID-19 infections and deaths tend to possess weekly oscillations. The purpose of this work is to forecast COVID-19 data with partially cyclical fluctuations. A partially periodic oscillating ARIMA model is suggested to enhance the predict...
ver más
|
|
|
|
|
|
|
Sherwood Lane Lambert, Kevin Krieger and Nathan Mauck
We propose a generalized, practitioner-oriented operating-leverage model for predicting operating income using net sales, cost of sales, depreciation, and SG&A. Prior research links operating income directly to these items; hence, our model includes ...
ver más
|
|
|
|
|
|
|
Chi Han, Wei Xiong and Ronghuan Yu
Mega-constellation network traffic forecasting provides key information for routing and resource allocation, which is of great significance to the performance of satellite networks. However, due to the self-similarity and long-range dependence (LRD) of m...
ver más
|
|
|
|
|
|
|
Zeqin Tian, Dengfeng Chen and Liang Zhao
Accurate building energy consumption prediction is a crucial condition for the sustainable development of building energy management systems. However, the highly nonlinear nature of data and complex influencing factors in the energy consumption of large ...
ver más
|
|
|
|