5.711   Artículos

 
en línea
Saeed Samadianfard, Salar Jarhan, Ely Salwana, Amir Mosavi, Shahaboddin Shamshirband and Shatirah Akib    
Advancement in river flow prediction systems can greatly empower the operational river management to make better decisions, practices, and policies. Machine learning methods recently have shown promising results in building accurate models for river flow... ver más
Revista: Water    Formato: Electrónico

 
en línea
Haoran Liu, Kehui Xu, Bin Li, Ya Han and Guandong Li    
Machine learning classifiers have been rarely used for the identification of seafloor sediment types in the rapidly changing dredge pits for coastal restoration. Our study uses multiple machine learning classifiers to identify the sediment types of the C... ver más
Revista: Water    Formato: Electrónico

 
en línea
Bahareh Kalantar, Husam A. H. Al-Najjar, Biswajeet Pradhan, Vahideh Saeidi, Alfian Abdul Halin, Naonori Ueda and Seyed Amir Naghibi    
Assessment of the most appropriate groundwater conditioning factors (GCFs) is essential when performing analyses for groundwater potential mapping. For this reason, in this work, we look at three statistical factor analysis methods?Variance Inflation Fac... ver más
Revista: Water    Formato: Electrónico

 
en línea
Veljko Marinkovic, Darko Dimitrovski, Vladimir Senic    
Research question: The aim of the paper is to identify the statistically significant drivers for gold panning revisit intention at the River Pek in Serbia as one of the key factors in determining a positive effect on the destination?s economic sustainabi... ver más
Revista: Management    Formato: Electrónico

 
en línea
Li Li and Kyung Soo Jun    
River flood routing computes changes in the shape of a flood wave over time as it travels downstream along a river. Conventional flood routing models, especially hydrodynamic models, require a high quality and quantity of input data, such as measured hyd... ver más
Revista: Water    Formato: Electrónico

 
en línea
Ying-Hsun Lai, Shin-Yeh Chen, Wen-Chi Chou, Hua-Yang Hsu and Han-Chieh Chao    
Federated learning trains a neural network model using the client?s data to maintain the benefits of centralized model training while maintaining their privacy. However, if the client data are not independently and identically distributed (non-IID) becau... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Jing Liu, Xuesong Hai and Keqin Li    
Massive amounts of data drive the performance of deep learning models, but in practice, data resources are often highly dispersed and bound by data privacy and security concerns, making it difficult for multiple data sources to share their local data dir... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Qishun Mei and Xuhui Li    
To address the limitations of existing methods of short-text entity disambiguation, specifically in terms of their insufficient feature extraction and reliance on massive training samples, we propose an entity disambiguation model called COLBERT, which f... ver más
Revista: Information    Formato: Electrónico

 
en línea
Subin Kim, Heejin Hwang, Keunyeong Oh and Jiuk Shin    
The seismically deficient column details in existing reinforced concrete buildings affect the overall behavior of the building depending on the failure type of the column. The purpose of this study is to develop and validate a machine-learning-based pred... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Fariha Imam, Petr Musilek and Marek Z. Reformat    
Due to aging infrastructure, technical issues, increased demand, and environmental developments, the reliability of power systems is of paramount importance. Utility companies aim to provide uninterrupted and efficient power supply to their customers. To... ver más
Revista: Information    Formato: Electrónico

« Anterior     Página: 1 de 345     Siguiente »