44   Artículos

 
en línea
Ruicheng Gao, Zhancai Dong, Yuqi Wang, Zhuowen Cui, Muyang Ye, Bowen Dong, Yuchun Lu, Xuaner Wang, Yihong Song and Shuo Yan    
In this study, a deep-learning-based intelligent detection model was designed and implemented to rapidly detect cotton pests and diseases. The model integrates cutting-edge Transformer technology and knowledge graphs, effectively enhancing pest and disea... ver más
Revista: Agriculture    Formato: Electrónico

 
en línea
Jizhong Deng, Chang Yang, Kanghua Huang, Luocheng Lei, Jiahang Ye, Wen Zeng, Jianling Zhang, Yubin Lan and Yali Zhang    
The realization that mobile phones can detect rice diseases and insect pests not only solves the problems of low efficiency and poor accuracy from manually detection and reporting, but it also helps farmers detect and control them in the field in a timel... ver más
Revista: Agronomy    Formato: Electrónico

 
en línea
Jie Chen, Xiaochun Hu, Jiahao Lu, Yan Chen and Xin Huang    
The number of wheat ears per unit area is crucial for assessing wheat yield, but automated wheat ear counting still faces significant challenges due to factors like lighting, orientation, and density variations. Departing from most static image analysis ... ver más
Revista: Agriculture    Formato: Electrónico

 
en línea
Yanmin Lei, Dong Pan, Zhibin Feng and Junru Qian    
With the development of deep learning technology, more and more researchers are interested in ear recognition. Human ear recognition is a biometric identification technology based on human ear feature information and it is often used for authentication a... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Mohammed Imran Basheer Ahmed, Rim Zaghdoud, Mohammed Salih Ahmed, Razan Sendi, Sarah Alsharif, Jomana Alabdulkarim, Bashayr Adnan Albin Saad, Reema Alsabt, Atta Rahman and Gomathi Krishnasamy    
To constructively ameliorate and enhance traffic safety measures in Saudi Arabia, a prolific number of AI (Artificial Intelligence) traffic surveillance technologies have emerged, including Saher, throughout the past years. However, rapidly detecting a v... ver más
Revista: Big Data and Cognitive Computing    Formato: Electrónico

 
en línea
Xiang Yue, Kai Qi, Xinyi Na, Yang Zhang, Yanhua Liu and Cuihong Liu    
The spread of infections and rot are crucial factors in the decrease in tomato production. Accurately segmenting the affected tomatoes in real-time can prevent the spread of illnesses. However, environmental factors and surface features can affect tomato... ver más
Revista: Agriculture    Formato: Electrónico

 
en línea
Zhiwei Chen, Jianneng Chen, Yang Li, Zhiyong Gui and Taojie Yu    
The precise detection and positioning of tea buds are among the major issues in tea picking automation. In this study, a novel algorithm for detecting tea buds and estimating their poses in a field environment was proposed by using a depth camera. This a... ver más
Revista: Agriculture    Formato: Electrónico

 
en línea
Xiaowu Li, Kun Sun, Hongbo Fan and Zihan He    
Accurate cattle pose estimation is essential for Precision Livestock Farming (PLF). Computer vision-based, non-contact cattle pose estimation technology can be applied for behaviour recognition and lameness detection. Existing methods still face challeng... ver más
Revista: Agriculture    Formato: Electrónico

 
en línea
Rio Arifando, Shinji Eto and Chikamune Wada    
Object detection is crucial for individuals with visual impairment, especially when waiting for a bus. In this study, we propose a lightweight and highly accurate bus detection model based on an improved version of the YOLOv5 model. We propose integratin... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Boyu Liu, Hao Wang, Yongqiang Wang, Congling Zhou and Lei Cai    
The recognition of lane line type plays an important role in the perception of advanced driver assistance systems (ADAS). In actual vehicle driving on roads, there are a variety of lane line type and complex road conditions which present significant chal... ver más
Revista: Applied Sciences    Formato: Electrónico

« Anterior     Página: 1 de 3     Siguiente »