|
|
|
Arturs Kempelis, Inese Polaka, Andrejs Romanovs and Antons Patlins
Urban agriculture presents unique challenges, particularly in the context of microclimate monitoring, which is increasingly important in food production. This paper explores the application of convolutional neural networks (CNNs) to forecast key sensor m...
ver más
|
|
|
|
|
|
|
Mohammad Alhumaid and Ayman G. Fayoumi
Paranasal sinus pathologies, particularly those affecting the maxillary sinuses, pose significant challenges in diagnosis and treatment due to the complex anatomical structures and diverse disease manifestations. The aim of this study is to investigate t...
ver más
|
|
|
|
|
|
|
Md Easin Hasan and Amy Wagler
Neuroimaging experts in biotech industries can benefit from using cutting-edge artificial intelligence techniques for Alzheimer?s disease (AD)- and dementia-stage prediction, even though it is difficult to anticipate the precise stage of dementia and AD....
ver más
|
|
|
|
|
|
|
Salman Ibne Eunus, Shahriar Hossain, A. E. M. Ridwan, Ashik Adnan, Md. Saiful Islam, Dewan Ziaul Karim, Golam Rabiul Alam and Jia Uddin
Accidents due to defective railway lines and derailments are common disasters that are observed frequently in Southeast Asian countries. It is imperative to run proper diagnosis over the detection of such faults to prevent such accidents. However, manual...
ver más
|
|
|
|
|
|
|
Moiz Hassan, Kandasamy Illanko and Xavier N. Fernando
Single Image Super Resolution (SSIR) is an intriguing research topic in computer vision where the goal is to create high-resolution images from low-resolution ones using innovative techniques. SSIR has numerous applications in fields such as medical/sate...
ver más
|
|
|
|
|
|
|
Ku Muhammad Naim Ku Khalif, Woo Chaw Seng, Alexander Gegov, Ahmad Syafadhli Abu Bakar and Nur Adibah Shahrul
Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of ...
ver más
|
|
|
|
|
|
|
Emre Ercan, Muhammed Serdar Avci, Mahmut Pekedis and Çaglayan Hizal
Structural health monitoring (SHM) plays a crucial role in extending the service life of engineering structures. Effective monitoring not only provides insights into the health and functionality of a structure but also serves as an early warning system f...
ver más
|
|
|
|
|
|
|
Pengfei Zhao and Ze Liu
The three-dimensional (3D) reconstruction of Electromagnetic Tomography (EMT) is an important task for many applications, such as the non-destructive testing of inner defects in rail systems. Additionally, image reconstruction algorithms utilizing deep l...
ver más
|
|
|
|
|
|
|
Binghui Zhao, Liguo Han, Pan Zhang, Qiang Feng and Liyun Ma
In passive seismic exploration, the number and location of underground sources are very random, and there may be few passive sources or an uneven spatial distribution. The random distribution of seismic sources can cause the virtual shot recordings to pr...
ver más
|
|
|
|
|
|
|
Tianhao Gao, Meng Zhang, Yifan Zhu, Youjian Zhang, Xiangsheng Pang, Jing Ying and Wenming Liu
Classifying sports videos is complex due to their dynamic nature. Traditional methods, like optical flow and the Histogram of Oriented Gradient (HOG), are limited by their need for expertise and lack of universality. Deep learning, particularly Convoluti...
ver más
|
|
|
|