27   Artículos

 
en línea
Eleni Vlachou, Aristeidis Karras, Christos Karras, Leonidas Theodorakopoulos, Constantinos Halkiopoulos and Spyros Sioutas    
In this work, we present a Distributed Bayesian Inference Classifier for Large-Scale Systems, where we assess its performance and scalability on distributed environments such as PySpark. The presented classifier consistently showcases efficient inference... ver más
Revista: Big Data and Cognitive Computing    Formato: Electrónico

 
en línea
Wiem Chebil, Mohammad Wedyan, Moutaz Alazab, Ryan Alturki and Omar Elshaweesh    
This research proposes a new approach to improve information retrieval systems based on a multinomial naive Bayes classifier (MNBC), Bayesian networks (BNs), and a multi-terminology which includes MeSH thesaurus (Medical Subject Headings) and SNOMED CT (... ver más
Revista: Information    Formato: Electrónico

 
en línea
Elie Azeraf, Emmanuel Monfrini and Wojciech Pieczynski    
Practitioners have used hidden Markov models (HMMs) in different problems for about sixty years. Moreover, conditional random fields (CRFs) are an alternative to HMMs and appear in the literature as different and somewhat concurrent models. We propose tw... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Duo Sun, Lei Zhang, Kai Jin, Jiasheng Ling and Xiaoyuan Zheng    
Aiming at the imbalance of industrial control system data and the poor detection effect of industrial control intrusion detection systems on network attack traffic problems, we propose an ETM-TBD model based on hybrid machine learning and neural network ... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Wenyi Zhou, Hongguang Fan, Jihong Zhu, Hui Wen and Ying Xie    
This paper first studies the generalization ability of the convolutional layer as a feature mapper (CFM) for extracting image features and the classification ability of the multilayer perception (MLP) in a CNN. Then, a novel generalized hybrid probabilit... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Olga V. Okhlupina,Dmitry S. Murashko     Pág. 17 - 20
Among the common methods of combating spam, a special place is occupied by a probabilistic machine learning algorithm, which is based on the well-known Bayes theorem. The so-called "naive" Bayesian classifier establishes the class of the document by dete... ver más
Revista: International Journal of Open Information Technologies    Formato: Electrónico

 
en línea
Enas Elgeldawi, Awny Sayed, Ahmed R. Galal and Alaa M. Zaki    
Machine learning models are used today to solve problems within a broad span of disciplines. If the proper hyperparameter tuning of a machine learning classifier is performed, significantly higher accuracy can be obtained. In this paper, a comprehensive ... ver más
Revista: Informatics    Formato: Electrónico

 
en línea
Girma Neshir, Andreas Rauber and Solomon Atnafu    
Topic Modeling is a statistical process, which derives the latent themes from extensive collections of text. Three approaches to topic modeling exist, namely, unsupervised, semi-supervised and supervised. In this work, we develop a supervised topic model... ver más
Revista: Information    Formato: Electrónico

 
en línea
Lorenzo Ricciardi Celsi, Andrea Caliciotti, Matteo D'Onorio, Eugenio Scocchi, Nour Alhuda Sulieman and Massimo Villari    
The paper proposes a data-driven strategy for predicting technical ticket reopening in the context of customer service for telecommunications companies providing 5G fiber optic networks. Namely, the main aim is to ensure that, between end user and servic... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Atallah AL-Shatnawi,Faisal Al-Saqqar,Safa?a Alhusban     Pág. pp. 20 - 34
In this paper, we introduce a multi-stage offline holistic handwritten Arabic text recognition model using the Local Binary Pattern (LBP) technique and two machine-learning approaches; Support Vector Machines (SVM) and Artificial Neural Network (ANN). In... ver más

« Anterior     Página: 1 de 2     Siguiente »