20   Artículos

 
en línea
Ilia Zaznov, Julian Martin Kunkel, Atta Badii and Alfonso Dufour    
This paper introduces a novel deep learning approach for intraday stock price direction prediction, motivated by the need for more accurate models to enable profitable algorithmic trading. The key problems addressed are effectively modelling complex limi... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Jonathan Decker, Piotr Kasprzak and Julian Martin Kunkel    
Serverless computing has grown massively in popularity over the last few years, and has provided developers with a way to deploy function-sized code units without having to take care of the actual servers or deal with logging, monitoring, and scaling of ... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Julian M. Kunkel,Luciana R. Pedro     Pág. 35 - 53
The efficient, convenient, and robust execution of data-driven workflows and enhanced data management are essential for productivity in scientific computing. In HPC, the concerns of storage and computing are traditionally separated and optimise... ver más
Revista: Supercomputing Frontiers and Innovations    Formato: Electrónico

 
en línea
Jakob Lüttgau,Michael Kuhn,Kira Duwe,Yevhen Alforov,Eugen Betke,Julian Kunkel,Thomas Ludwig     Pág. 31 - 58
In current supercomputers, storage is typically provided by parallel distributed file systems for hot data and tape archives for cold data. These file systems are often compatible with local file systems due to their use of the POSIX interface and semant... ver más
Revista: Supercomputing Frontiers and Innovations    Formato: Electrónico

 
en línea
Julian Martin Kunkel,Anastasiia Novikova,Eugen Betke     Pág. 17 - 33
Data intense scientific domains use data compression to reduce the storage space needed. Lossless data compression preserves information accurately but lossy data compression can achieve much higher compression rates depending on the tolerable error marg... ver más
Revista: Supercomputing Frontiers and Innovations    Formato: Electrónico

 
en línea
Jan Fabian Schmid,Julian M. Kunkel     Pág. 19 - 33
The prediction of file access times is an important part for the modeling of supercomputer's storage systems. These models can be used to develop analysis tools which support the users to integrate efficient I/O behavior.In this paper, we analyze and pre... ver más
Revista: Supercomputing Frontiers and Innovations    Formato: Electrónico

 
en línea
Julian Martin Kunkel     Pág. 34 - 39
Understanding the characteristics of data stored in data centers helps computer scientists in identifying the most suitable storage infrastructure to deal with these workloads. For example, knowing the relevance of file formats allows optimizing the rele... ver más
Revista: Supercomputing Frontiers and Innovations    Formato: Electrónico

 
en línea
Michael Kuhn,Julian Kunkel,Thomas Ludwig     Pág. 75 - 94
The different rates of increase for computational power and storage capabilities of supercomputers turn data storage into a technical and economical problem. Because storage capabilities are lagging behind, investments and operational costs for stor... ver más
Revista: Supercomputing Frontiers and Innovations    Formato: Electrónico

 
en línea
Julian Martin Kunkel,Michael Kuhn,Thomas Ludwig     Pág. 116 - 134
The computational power and storage capability of supercomputers are growing at a different pace, with storage lagging behind; the widening gap necessitates new approaches to keep the investment and running costs for storage systems at bay. In this paper... ver más
Revista: Supercomputing Frontiers and Innovations    Formato: Electrónico

« Anterior     Página: 1 de 1     Siguiente »