|
|
|
José Luis da Silva Pinho,António Pereira,Rolando Faria
Pág. 69 - 82
Os sistemas de previsão e alerta utilizados na gestão de recursos hídricos e operação de sistemas de drenagem tiveram desenvolvimentos significativos nos últimos anos. Esses desenvolvimentos resultaram da disponibilidade de informações meteorológicas em ...
ver más
|
|
|
|
|
|
|
Francisca Lanai Ribeiro Torres, Luana Medeiros Marangon Lima, Michelle Simões Reboita, Anderson Rodrigo de Queiroz and José Wanderley Marangon Lima
Streamflow forecasting plays a crucial role in the operational planning of hydro-dominant power systems, providing valuable insights into future water inflows to reservoirs and hydropower plants. It relies on complex mathematical models, which, despite t...
ver más
|
|
|
|
|
|
|
Torrey Wagner, Dennis Guhl and Brent Langhals
Given the emergence of China as a political and economic power in the 21st century, there is increased interest in analyzing Chinese news articles to better understand developing trends in China. Because of the volume of the material, automating the cate...
ver más
|
|
|
|
|
|
|
Abdul Rahaman Wahab Sait and Ali Mohammad Alorsan Bani Awad
Coronary artery disease (CAD) is the most prevalent form of cardiovascular disease that may result in myocardial infarction. Annually, it leads to millions of fatalities and causes billions of dollars in global economic losses. Limited resources and comp...
ver más
|
|
|
|
|
|
|
Zhiyang Li, Zhigang Nie and Guang Li
One of the crucial research areas in agricultural decision-making processes is crop yield prediction. This study leverages the advantages of hybrid models to address the complex interplay of genetic, environmental, and management factors to achieve more ...
ver más
|
|
|
|
|
|
|
Xiu Li, Aron Henriksson, Martin Duneld, Jalal Nouri and Yongchao Wu
Educational content recommendation is a cornerstone of AI-enhanced learning. In particular, to facilitate navigating the diverse learning resources available on learning platforms, methods are needed for automatically linking learning materials, e.g., in...
ver más
|
|
|
|
|
|
|
Abdul Rehman Khalid, Nsikak Owoh, Omair Uthmani, Moses Ashawa, Jude Osamor and John Adejoh
In the era of digital advancements, the escalation of credit card fraud necessitates the development of robust and efficient fraud detection systems. This paper delves into the application of machine learning models, specifically focusing on ensemble met...
ver más
|
|
|
|
|
|
|
Z. Jason Hou, Nicholas D. Ward, Allison N. Myers-Pigg, Xinming Lin, Scott R. Waichler, Cora Wiese Moore, Matthew J. Norwood, Peter Regier and Steven B. Yabusaki
The influence of coastal ecosystems on global greenhouse gas (GHG) budgets and their response to increasing inundation and salinization remains poorly constrained. In this study, we have integrated an uncertainty quantification (UQ) and ensemble machine ...
ver más
|
|
|
|
|
|
|
Roman Rybka, Yury Davydov, Danila Vlasov, Alexey Serenko, Alexander Sboev and Vyacheslav Ilyin
Developing a spiking neural network architecture that could prospectively be trained on energy-efficient neuromorphic hardware to solve various data analysis tasks requires satisfying the limitations of prospective analog or digital hardware, i.e., local...
ver más
|
|
|
|
|
|
|
Hoan-Suk Choi and Jinhong Yang
Suicidal ideation constitutes a critical concern in mental health, adversely affecting individuals and society at large. The early detection of such ideation is vital for providing timely support to individuals and mitigating its societal impact. With so...
ver más
|
|
|
|