12   Artículos

 
en línea
Chenxi Liu, Israel Cohen, Rotem Vishinkin and Hossam Haick    
Tuberculosis (TB) has long been recognized as a significant health concern worldwide. Recent advancements in noninvasive wearable devices and machine learning (ML) techniques have enabled rapid and cost-effective testing for the real-time detection of TB... ver más
Revista: Journal of Low Power Electronics and Applications    Formato: Electrónico

 
en línea
Alon Ascoli, Martin Weiher, Melanie Herzig, Stefan Slesazeck, Thomas Mikolajick and Ronald Tetzlaff    
This manuscript provides a comprehensive tutorial on the operating principles of a bio-inspired Cellular Nonlinear Network, leveraging the local activity of NbOx x memristors to apply a spike-based computing paradigm, which is expected to deliver such a... ver más
Revista: Journal of Low Power Electronics and Applications    Formato: Electrónico

 
en línea
Carlos Lassance, Vincent Gripon and Antonio Ortega    
Deep Learning (DL) has attracted a lot of attention for its ability to reach state-of-the-art performance in many machine learning tasks. The core principle of DL methods consists of training composite architectures in an end-to-end fashion, where inputs... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Rasoul Shafipour and Gonzalo Mateos    
We develop online graph learning algorithms from streaming network data. Our goal is to track the (possibly) time-varying network topology, and affect memory and computational savings by processing the data on-the-fly as they are acquired. The setup enta... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Mario Coutino, Sundeep Prabhakar Chepuri, Takanori Maehara and Geert Leus    
To analyze and synthesize signals on networks or graphs, Fourier theory has been extended to irregular domains, leading to a so-called graph Fourier transform. Unfortunately, different from the traditional Fourier transform, each graph exhibits a differe... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Tiffany Fan, David I. Shuman, Shashanka Ubaru and Yousef Saad    
We propose and investigate two new methods to approximate ??(??)?? f ( A ) b for large, sparse, Hermitian matrices ?? A . Computations of this form play an important role in numerous signal processing and machine learning tasks. The main idea behind bot... ver más
Revista: Algorithms    Formato: Electrónico

« Anterior     Página: 1 de 1     Siguiente »