541   Artículos

 
en línea
Saeed Samadianfard, Salar Jarhan, Ely Salwana, Amir Mosavi, Shahaboddin Shamshirband and Shatirah Akib    
Advancement in river flow prediction systems can greatly empower the operational river management to make better decisions, practices, and policies. Machine learning methods recently have shown promising results in building accurate models for river flow... ver más
Revista: Water    Formato: Electrónico

 
en línea
Pablo de Llano, Carlos Piñeiro, Manuel Rodríguez     Pág. pp. 163 - 198
This paper offers a comparative analysis of the effectiveness of eight popular forecasting methods: univariate, linear, discriminate and logit regression; recursive partitioning, rough sets, artificial neural networks, and DEA. Our goals are: clarify the... ver más
Revista: Estudios de Economía    Formato: Electrónico

 
en línea
Junting Wang, Tianhe Xu, Wei Huang, Liping Zhang, Jianxu Shu, Yangfan Liu and Linyang Li    
Underwater sound speed is one of the most significant factors that affects high-accuracy underwater acoustic positioning and navigation. Due to its complex temporal variation, the forecasting of the underwater sound speed field (SSF) becomes a challengin... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Efrain Noa-Yarasca, Javier M. Osorio Leyton and Jay P. Angerer    
Timely forecasting of aboveground vegetation biomass is crucial for effective management and ensuring food security. However, research on predicting aboveground biomass remains scarce. Artificial intelligence (AI) methods could bridge this research gap a... ver más
Revista: Agronomy    Formato: Electrónico

 
en línea
Konstantinos P. Fourkiotis and Athanasios Tsadiras    
In today?s evolving global world, the pharmaceutical sector faces an emerging challenge, which is the rapid surge of the global population and the consequent growth in drug production demands. Recognizing this, our study explores the urgent need to stren... ver más
Revista: Forecasting    Formato: Electrónico

 
en línea
Xiaoou Li    
This paper tackles the challenge of time series forecasting in the presence of missing data. Traditional methods often struggle with such data, which leads to inaccurate predictions. We propose a novel framework that combines the strengths of Generative ... ver más
Revista: Information    Formato: Electrónico

 
en línea
Shih-Lun Fang, Yi-Shan Lin, Sheng-Chih Chang, Yi-Lung Chang, Bing-Yun Tsai and Bo-Jein Kuo    
The reference evapotranspiration (ET0) information is crucial for irrigation planning and water resource management. While the Penman-Monteith (PM) equation is widely recognized for ET0 calculation, its reliance on numerous meteorological parameters cons... ver más
Revista: Agriculture    Formato: Electrónico

 
en línea
Ru Wang, Qingyu Zheng, Wei Li, Guijun Han, Xuan Wang and Song Hu    
The uncertainty in the initial condition seriously affects the forecasting skill of numerical models. Targeted observations play an important role in reducing uncertainty in numerical prediction. The conditional nonlinear optimal perturbation (CNOP) meth... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Wei Zhuang, Zhiheng Li, Ying Wang, Qingyu Xi and Min Xia    
Predicting photovoltaic (PV) power generation is a crucial task in the field of clean energy. Achieving high-accuracy PV power prediction requires addressing two challenges in current deep learning methods: (1) In photovoltaic power generation prediction... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Han Lin Shang    
A key summary statistic in a stationary functional time series is the long-run covariance function that measures serial dependence. It can be consistently estimated via a kernel sandwich estimator, which is the core of dynamic functional principal compon... ver más
Revista: Forecasting    Formato: Electrónico

« Anterior     Página: 1 de 33     Siguiente »