30   Artículos

 
en línea
Mikael Sabuhi, Petr Musilek and Cor-Paul Bezemer    
As the number of machine learning applications increases, growing concerns about data privacy expose the limitations of traditional cloud-based machine learning methods that rely on centralized data collection and processing. Federated learning emerges a... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Yankai Lv, Haiyan Ding, Hao Wu, Yiji Zhao and Lei Zhang    
Federated learning (FL) is an emerging decentralized machine learning framework enabling private global model training by collaboratively leveraging local client data without transferring it centrally. Unlike traditional distributed optimization, FL trai... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Jonathan Vance, Khaled Rasheed, Ali Missaoui and Frederick W. Maier    
Alfalfa is critical to global food security, and its data is abundant in the U.S. nationally, but often scarce locally, limiting the potential performance of machine learning (ML) models in predicting alfalfa biomass yields. Training ML models on local-o... ver más
Revista: AI    Formato: Electrónico

 
en línea
Fan Huang , Nan Yang, Huaming Chen , Wei Bao and Dong Yuan    
With the widespread use of end devices, online multi-label learning has become popular as the data generated by users using the Internet of Things devices have become huge and rapidly updated. However, in many scenarios, the user data are often generated... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Junxia Yang and Youpeng Zhang    
This paper studies the distributed adaptive cooperative control of multiple urban rail trains with position output constraints and uncertain parameters. Based on an ordered set of trains running on the route, a dynamic multiple trains movement model is c... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Yazhi Liu, Dongyu Wei, Chunyang Zhang and Wei Li    
In QoE fairness optimization of multiple video streams, a distributed video stream fairness scheduling strategy based on federated deep reinforcement learning is designed to address the problem of low bandwidth utilization due to unfair bandwidth allocat... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Zhao Wang, Qingguo Xu and Weimin Li    
Analyzing and predicting community evolution has many important applications in criminology, sociology, and other fields. In community evolution prediction, most of the existing research is simply calculating the features of the community, and then predi... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
V. Y. Negrey,K. M. Shkuryn     Pág. 53 - 64
Purpose. The research aims at the analysis of the possibility of using in the development of one-group train formation plan the criterion, which allows to consider the costs associated with the movement of cars and locomotives. Methodology. The existing ... ver más
Revista: Nauka ta Progres Transportu    Formato: Electrónico

 
en línea
Ghazal Zakeri, Nils O.E. Olsson     Pág. 373 - 379
Norwegian railways experienced a steady decline in punctuality during the period 2007-2010. This paper briefly discusses the concept of train punctuality, influencing factors on punctuality, and investigates relationship between punctuality and weather f... ver más
Revista: Transportation Research Procedia    Formato: Electrónico

 
en línea
Abderrahman Ait Ali, Jonas Eliasson, Jennifer Warg     Pág. 849 - 856
On highly used railway lines with heterogeneous traffic, timetabling is challenging. In particular, the limited existing capacity means that to guarantee an acceptable level of quality, the infrastructure manager must cancel some train services on the ex... ver más
Revista: Transportation Research Procedia    Formato: Electrónico

« Anterior     Página: 1 de 2     Siguiente »