|
|
|
Kalifa Shantta,Otman Basir
Pág. 55 - 61
Even with the enormous progress in medical technology, brain tumor detection is still an extremely tedious and complex task for the physicians. The early and accurate detection of brain tumors enables effective and efficient therapy and thus can result i...
ver más
|
|
|
|
|
|
|
Fang Ren, Xuan Shi, Enya Tang and Mengmeng Zeng
To protect the security of medical images and to improve the embedding ability of data in encrypted medical images, this paper proposes a permutation ordered binary (POB) number system-based hiding and authentication scheme for medical images, which incl...
ver más
|
|
|
|
|
|
|
Abdul Rahaman Wahab Sait and Ali Mohammad Alorsan Bani Awad
Coronary artery disease (CAD) is the most prevalent form of cardiovascular disease that may result in myocardial infarction. Annually, it leads to millions of fatalities and causes billions of dollars in global economic losses. Limited resources and comp...
ver más
|
|
|
|
|
|
|
Jin-Woo Kong, Byoung-Doo Oh, Chulho Kim and Yu-Seop Kim
Intracerebral hemorrhage (ICH) is a severe cerebrovascular disorder that poses a life-threatening risk, necessitating swift diagnosis and treatment. While CT scans are the most effective diagnostic tool for detecting cerebral hemorrhage, their interpreta...
ver más
|
|
|
|
|
|
|
Shoffan Saifullah and Rafal Drezewski
Accurate medical image segmentation is paramount for precise diagnosis and treatment in modern healthcare. This research presents a comprehensive study of the efficacy of particle swarm optimization (PSO) combined with histogram equalization (HE) preproc...
ver más
|
|
|
|
|
|
|
Jie Zhang, Fan Li, Xin Zhang, Yue Cheng and Xinhong Hei
As a crucial task for disease diagnosis, existing semi-supervised segmentation approaches process labeled and unlabeled data separately, ignoring the relationships between them, thereby limiting further performance improvements. In this work, we introduc...
ver más
|
|
|
|
|
|
|
Yiheng Zhou, Kainan Ma, Qian Sun, Zhaoyuxuan Wang and Ming Liu
Over the past several decades, deep neural networks have been extensively applied to medical image segmentation tasks, achieving significant success. However, the effectiveness of traditional deep segmentation networks is substantially limited by the sma...
ver más
|
|
|
|
|
|
|
Woonghee Lee and Younghoon Kim
This study introduces a deep-learning-based framework for detecting adversarial attacks in CT image segmentation within medical imaging. The proposed methodology includes analyzing features from various layers, particularly focusing on the first layer, a...
ver más
|
|
|
|
|
|
|
László Szilágyi and Levente Kovács
|
|
|
|
|
|
|
Wandile Nhlapho, Marcellin Atemkeng, Yusuf Brima and Jean-Claude Ndogmo
The advent of deep learning (DL) has revolutionized medical imaging, offering unprecedented avenues for accurate disease classification and diagnosis. DL models have shown remarkable promise for classifying brain tumors from Magnetic Resonance Imaging (M...
ver más
|
|
|
|