14   Artículos

 
en línea
Xuan Wu and Yafei Song    
In recent years, the presence of malware has been growing exponentially, resulting in enormous demand for efficient malware classification methods. However, the existing machine learning-based classifiers have high false positive rates and cannot effecti... ver más
Revista: Information    Formato: Electrónico

 
en línea
Jingyun Zhang, Lingyu Xu and Baogang Jin    
The multi-model ensemble (MME) forecast for meteorological elements has been proved many times to be more skillful than the single model. It improves the forecast quality by integrating multiple sets of numerical forecast results with different spatial-t... ver más
Revista: Information    Formato: Electrónico

 
en línea
Linus Zhang and Xiaoliu Yang    
Given the substantial impacts that are expected due to climate change, it is crucial that accurate rainfall?runoff results are provided for various decision-making purposes. However, these modeling results often generate uncertainty or bias due to the im... ver más
Revista: Water    Formato: Electrónico

 
en línea
Bo Qu, Xingnan Zhang, Florian Pappenberger, Tao Zhang, Yuanhao Fang     Pág. 1 - 13
Statistical post-processing for multi-model grand ensemble (GE) hydrologic predictions is necessary, in order to achieve more accurate and reliable probabilistic forecasts. This paper presents a case study which applies Bayesian model averaging (BMA) to ... ver más
Revista: Water    Formato: Electrónico

 
en línea
Bastian Klein, Dennis Meissner, Hans-Ulrich Kobialka, Paolo Reggiani     Pág. 1 - 22
Predictive uncertainty (PU) is defined as the probability of occurrence of an observed variable of interest, conditional on all available information. In this context, hydrological model predictions and forecasts are considered to be accessible but yet u... ver más
Revista: Water    Formato: Electrónico

« Anterior     Página: 1 de 1     Siguiente »