69   Artículos

 
en línea
Che-Hao Chang, Jason Lin, Jia-Wei Chang, Yu-Shun Huang, Ming-Hsin Lai and Yen-Jen Chang    
Recently, data-driven approaches have become the dominant solution for prediction problems in agricultural industries. Several deep learning models have been applied to crop yield prediction in smart farming. In this paper, we proposed an efficient hybri... ver más
Revista: Agriculture    Formato: Electrónico

 
en línea
Jianlong Ye, Hongchuan Yu, Gaoyang Liu, Jiong Zhou and Jiangpeng Shu    
Component identification and depth estimation are important for detecting the integrity of post-disaster structures. However, traditional manual methods might be time-consuming, labor-intensive, and influenced by subjective judgments of inspectors. Deep-... ver más
Revista: Buildings    Formato: Electrónico

 
en línea
Jee-Tae Park, Chang-Yui Shin, Ui-Jun Baek and Myung-Sup Kim    
The classification of encrypted traffic plays a crucial role in network management and security. As encrypted network traffic becomes increasingly complicated and challenging to analyze, there is a growing need for more efficient and comprehensive analyt... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Jie Zhang, Fan Li, Xin Zhang, Yue Cheng and Xinhong Hei    
As a crucial task for disease diagnosis, existing semi-supervised segmentation approaches process labeled and unlabeled data separately, ignoring the relationships between them, thereby limiting further performance improvements. In this work, we introduc... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Qiqi Zheng, Chao Wei, Xinfei Yan, Housong Ruan and Bangyu Wu    
Seismic elastic parameter inversion translates seismic data into subsurface structures and physical properties of formations. Traditional model-based inversion methods have limitations in retrieving complex geological structures. In recent years, deep le... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Qianmu Xiao and Liang Zhao    
Acquiring relevant, high-quality, and heterogeneous medical images is essential in various types of automated analysis, used for a variety of downstream data augmentation tasks. However, a large number of real image samples are expensive to obtain, espec... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Jing Tian, Zilin Zhao and Zhiming Ding    
With the widespread use of the location-based social networks (LBSNs), the next point-of-interest (POI) recommendation has become an essential service, which aims to understand the user?s check-in behavior at the current moment by analyzing and mining th... ver más
Revista: ISPRS International Journal of Geo-Information    Formato: Electrónico

 
en línea
Shi Li and Xiaoting Chen    
The task of joint dialogue act recognition (DAR) and sentiment classification (DSC) aims to predict both the act and sentiment labels of each utterance in a dialogue. Existing methods mainly focus on local or global semantic features of the dialogue from... ver más
Revista: Information    Formato: Electrónico

 
en línea
Jinya Xu, Jiaye Gong, Luyao Wang and Yunbo Li    
The stability of navigation in waves is crucial for ships, and the effect of the waves on navigation stability is complicated. Hence, the LSTM neural network technique is applied to predict the course changing of a ship in different wave conditions, wher... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Wentao Lv, Fan Li, Shijie Luo and Jie Xiang    
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that can reduce quality of life and burden families. However, there is a lack of objectivity in clinical diagnosis, so it is very important to develop a method for early and accurate... ver más
Revista: Algorithms    Formato: Electrónico

« Anterior     Página: 1 de 4     Siguiente »