|
|
|
Zhengyang Zhong, Lijun Yun, Feiyan Cheng, Zaiqing Chen and Chunjie Zhang
This paper proposes a lightweight and efficient mango detection model named Light-YOLO based on the Darknet53 structure, aiming to rapidly and accurately detect mango fruits in natural environments, effectively mitigating instances of false or missed det...
ver más
|
|
|
|
|
|
|
Yishen Lin, Zifan Huang, Yun Liang, Yunfan Liu and Weipeng Jiang
Citrus fruits hold pivotal positions within the agricultural sector. Accurate yield estimation for citrus fruits is crucial in orchard management, especially when facing challenges of fruit occlusion due to dense foliage or overlapping fruits. This study...
ver más
|
|
|
|
|
|
|
Junyi Chen, Yanyun Shen, Yinyu Liang, Zhipan Wang and Qingling Zhang
Aircraft detection in SAR images of airports remains crucial for continuous ground observation and aviation transportation scheduling in all weather conditions, but low resolution and complex scenes pose unique challenges. Existing methods struggle with ...
ver más
|
|
|
|
|
|
|
JongBae Kim
This technology can prevent accidents involving large vehicles, such as trucks or buses, by selecting an optimal driving lane for safe autonomous driving. This paper proposes a method for detecting forward-driving vehicles within road images obtained fro...
ver más
|
|
|
|
|
|
|
Baobao Liu, Heying Wang, Zifan Cao, Yu Wang, Lu Tao, Jingjing Yang and Kaibing Zhang
Defect detection holds significant importance in improving the overall quality of fabric manufacturing. To improve the effectiveness and accuracy of fabric defect detection, we propose the PRC-Light YOLO model for fabric defect detection and establish a ...
ver más
|
|
|
|
|
|
|
Qing Dong, Lina Sun, Tianxin Han, Minqi Cai and Ce Gao
Timely and effective pest detection is essential for agricultural production, facing challenges such as complex backgrounds and a vast number of parameters. Seeking solutions has become a pressing matter. This paper, based on the YOLOv5 algorithm, develo...
ver más
|
|
|
|
|
|
|
Rujia Li, Yadong Li, Weibo Qin, Arzlan Abbas, Shuang Li, Rongbiao Ji, Yehui Wu, Yiting He and Jianping Yang
This research tackles the intricate challenges of detecting densely distributed maize leaf diseases and the constraints inherent in YOLO-based detection algorithms. It introduces the GhostNet_Triplet_YOLOv8s algorithm, enhancing YOLO v8s by integrating t...
ver más
|
|
|
|
|
|
|
Jih-Ching Chiu, Guan-Yi Lee, Chih-Yang Hsieh and Qing-You Lin
In computer vision and image processing, the shift from traditional cameras to emerging sensing tools, such as gesture recognition and object detection, addresses privacy concerns. This study navigates the Integrated Sensing and Communication (ISAC) era,...
ver más
|
|
|
|
|
|
|
Zhou Fang, Xiaoyong Wang, Liang Zhang and Bo Jiang
Currently, deep learning is extensively utilized for ship target detection; however, achieving accurate and real-time detection of multi-scale targets remains a significant challenge. Considering the diverse scenes, varied scales, and complex backgrounds...
ver más
|
|
|
|
|
|
|
Changhong Liu, Jiawen Wen, Jinshan Huang, Weiren Lin, Bochun Wu, Ning Xie and Tao Zou
Underwater object detection is crucial in marine exploration, presenting a challenging problem in computer vision due to factors like light attenuation, scattering, and background interference. Existing underwater object detection models face challenges ...
ver más
|
|
|
|