21   Artículos

 
en línea
Mosaad Ali Hussein Ali, Farag M. Mewafy, Wei Qian, Ajibola Richard Faruwa, Ali Shebl, Saleh Dabaa and Hussein A. Saleem    
The effective detection and monitoring of mining tailings? leachates (MTLs) plays a pivotal role in environmental protection and remediation efforts. Electrical resistivity tomography (ERT) is a non-invasive technique widely employed for mapping subsurfa... ver más
Revista: Water    Formato: Electrónico

 
en línea
Haidi Badr, Nayer Wanas and Magda Fayek    
Unsupervised domain adaptation (UDA) presents a significant challenge in sentiment analysis, especially when faced with differences between source and target domains. This study introduces Weighted Sequential Unsupervised Domain Adaptation (WS-UDA), a no... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Ali Sharifinejad and Elmira Hassanzadeh    
Assessing the impact of climate change on water systems often requires employing a hydrological model to estimate streamflow. However, the choice of hydrological model, process representation, input data resolution, and catchment discretization can poten... ver más
Revista: Water    Formato: Electrónico

 
en línea
Jian Wang, Yuexuan Cao, Kejian Wang and Chaolei Liu    
In vivo doubled haploid (DH) production based on crossing heterozygous germplasm with mtl haploid inducer lines promises to transform modern rice (Oryza sativa) breeding. However, this technology is limited, as haploid inducers and pollen acceptors have ... ver más
Revista: Agriculture    Formato: Electrónico

 
en línea
Matin Mortaheb, Cemil Vahapoglu and Sennur Ulukus    
Multi-task learning (MTL) is a paradigm to learn multiple tasks simultaneously by utilizing a shared network, in which a distinct header network is further tailored for fine-tuning for each distinct task. Personalized federated learning (PFL) can be achi... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Eunwoo Kim    
Multi-task learning (MTL) is a learning strategy for solving multiple tasks simultaneously while exploiting commonalities and differences between tasks for improved learning efficiency and prediction performance. Despite its potential, there remain sever... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Zeyu Cao, Wen Yao, Wei Peng, Xiaoya Zhang and Kairui Bao    
The rapid analysis of thermal stress and deformation plays a pivotal role in the thermal control measures and optimization of the structural design of satellites. For achieving real-time thermal stress and thermal deformation analysis of satellite mother... ver más
Revista: Aerospace    Formato: Electrónico

 
en línea
Ranjan Satapathy, Shweta Rajesh Pardeshi and Erik Cambria    
In recent years, deep learning-based sentiment analysis has received attention mainly because of the rise of social media and e-commerce. In this paper, we showcase the fact that the polarity detection and subjectivity detection subtasks of sentiment ana... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Wassen Aldjanabi, Abdelghani Dahou, Mohammed A. A. Al-qaness, Mohamed Abd Elaziz, Ahmed Mohamed Helmi and Robertas Dama?evicius    
As social media platforms offer a medium for opinion expression, social phenomena such as hatred, offensive language, racism, and all forms of verbal violence have increased spectacularly. These behaviors do not affect specific countries, groups, or comm... ver más
Revista: Informatics    Formato: Electrónico

 
en línea
Dixian Zhu, Changjie Cai, Tianbao Yang and Xun Zhou    
In this paper, we tackle air quality forecasting by using machine learning approaches to predict the hourly concentration of air pollutants (e.g., ozone, particle matter (PM2.5 PM 2.5 ) and sulfur dioxide). Machine learning, as one of the most popular te... ver más
Revista: Big Data and Cognitive Computing    Formato: Electrónico

« Anterior     Página: 1 de 2     Siguiente »