|
|
|
Jiaming Li, Ning Xie and Tingting Zhao
In recent years, with the rapid advancements in Natural Language Processing (NLP) technologies, large models have become widespread. Traditional reinforcement learning algorithms have also started experimenting with language models to optimize training. ...
ver más
|
|
|
|
|
|
|
Ivan A. Hernandez-Robles, Xiomara Gonzalez-Ramirez, Juan C. Olivares-Galvan, Rafael Escarela-Perez and Rodrigo Ocon-Valdez
Designing and manufacturing transformers often involves variations in heights and thicknesses of windings. However, such geometric asymmetry introduces a significant impact on the magnitude of stray transformer losses. This study examines the effects of ...
ver más
|
|
|
|
|
|
|
Ziyi Wang, Jinqing Jia, Lihua Zhang and Ziqi Li
The direct-shear test is the primary method used to test the shear strength of transparent soil, but this experiment is complex and easily influenced by experimental conditions. In order to simplify the process of obtaining the shear strength of transpar...
ver más
|
|
|
|
|
|
|
Hamed Alshammari, Ahmed El-Sayed and Khaled Elleithy
The effectiveness of existing AI detectors is notably hampered when processing Arabic texts. This study introduces a novel AI text classifier designed specifically for Arabic, tackling the distinct challenges inherent in processing this language. A parti...
ver más
|
|
|
|
|
|
|
Haiping Si, Mingchun Li, Weixia Li, Guipei Zhang, Ming Wang, Feitao Li and Yanling Li
Apples, as the fourth-largest globally produced fruit, play a crucial role in modern agriculture. However, accurately identifying apple diseases remains a significant challenge as failure in this regard leads to economic losses and poses threats to food ...
ver más
|
|
|
|
|
|
|
Lexin Zhang, Kuiheng Chen, Liping Zheng, Xuwei Liao, Feiyu Lu, Yilun Li, Yuzhuo Cui, Yaze Wu, Yihong Song and Shuo Yan
This study introduces a novel high-accuracy fruit fly detection model based on the Transformer structure, specifically aimed at addressing the unique challenges in fruit fly detection such as identification of small targets and accurate localization agai...
ver más
|
|
|
|
|
|
|
Zhichao Chen, Guoqiang Wang, Tao Lv and Xu Zhang
Diseases of tomato leaves can seriously damage crop yield and financial rewards. The timely and accurate detection of tomato diseases is a major challenge in agriculture. Hence, the early and accurate diagnosis of tomato diseases is crucial. The emergenc...
ver más
|
|
|
|
|
|
|
Utpal Barman, Parismita Sarma, Mirzanur Rahman, Vaskar Deka, Swati Lahkar, Vaishali Sharma and Manob Jyoti Saikia
Invading pests and diseases always degrade the quality and quantity of plants. Early and accurate identification of plant diseases is critical for plant health and growth. This work proposes a smartphone-based solution using a Vision Transformer (ViT) mo...
ver más
|
|
|
|
|
|
|
Bin Li, Huazhong Lu, Xinyu Wei, Shixuan Guan, Zhenyu Zhang, Xingxing Zhou and Yizhi Luo
Accurate litchi identification is of great significance for orchard yield estimations. Litchi in natural scenes have large differences in scale and are occluded by leaves, reducing the accuracy of litchi detection models. Adopting traditional horizontal ...
ver más
|
|
|
|
|
|
|
Hexin Lu, Xiaodong Zhu, Jingwei Cui and Haifeng Jiang
The process of iris recognition can result in a decline in recognition performance when the resolution of the iris images is insufficient. In this study, a super-resolution model for iris images, namely SwinGIris, which combines the Swin Transformer and ...
ver más
|
|
|
|