|
|
|
Lei Yang, Mengxue Xu and Yunan He
Convolutional Neural Networks (CNNs) have become essential in deep learning applications, especially in computer vision, yet their complex internal mechanisms pose significant challenges to interpretability, crucial for ethical applications. Addressing t...
ver más
|
|
|
|
|
|
|
Olga Kurasova, Arnoldas Bud?ys and Viktor Medvedev
As artificial intelligence has evolved, deep learning models have become important in extracting and interpreting complex patterns from raw multidimensional data. These models produce multidimensional embeddings that, while containing a lot of informatio...
ver más
|
|
|
|
|
|
|
Catur Supriyanto, Abu Salam, Junta Zeniarja and Adi Wijaya
This research paper presents a deep-learning approach to early detection of skin cancer using image augmentation techniques. We introduce a two-stage image augmentation process utilizing geometric augmentation and a generative adversarial network (GAN) t...
ver más
|
|
|
|
|
|
|
Varada Vivek Khanna, Krishnaraj Chadaga, Niranajana Sampathila, Srikanth Prabhu, Venkatesh Bhandage and Govardhan K. Hegde
Polycystic Ovary Syndrome (PCOS) is a complex disorder predominantly defined by biochemical hyperandrogenism, oligomenorrhea, anovulation, and in some cases, the presence of ovarian microcysts. This endocrinopathy inhibits ovarian follicle development ca...
ver más
|
|
|
|
|
|
|
Ezekiel Bernardo and Rosemary Seva
Explainable Artificial Intelligence (XAI) has successfully solved the black box paradox of Artificial Intelligence (AI). By providing human-level insights on AI, it allowed users to understand its inner workings even with limited knowledge of the machine...
ver más
|
|
|
|
|
|
|
Genane Youness and Adam Aalah
Prognosis and health management depend on sufficient prior knowledge of the degradation process of critical components to predict the remaining useful life. This task is composed of two phases: learning and prediction. The first phase uses the available ...
ver más
|
|
|
|
|
|
|
Mohit Kumar, Bernhard A. Moser, Lukas Fischer and Bernhard Freudenthaler
In order to develop machine learning and deep learning models that take into account the guidelines and principles of trustworthy AI, a novel information theoretic approach is introduced in this article. A unified approach to privacy-preserving interpret...
ver más
|
|
|
|
|
|
|
George Tzougas and Konstantin Kutzkov
We developed a methodology for the neural network boosting of logistic regression aimed at learning an additional model structure from the data. In particular, we constructed two classes of neural network-based models: shallow?dense neural networks with ...
ver más
|
|
|
|
|
|
|
Parisa Mahya and Johannes Fürnkranz
Recently, some effort went into explaining intransparent and black-box models, such as deep neural networks or random forests. So-called model-agnostic methods typically approximate the prediction of the intransparent black-box model with an interpretabl...
ver más
|
|
|
|
|
|
|
Fatma Yaprakdal and Merve Varol Arisoy
In the smart grid paradigm, precise electrical load forecasting (ELF) offers significant advantages for enhancing grid reliability and informing energy planning decisions. Specifically, mid-term ELF is a key priority for power system planning and operati...
ver más
|
|
|
|