40   Artículos

 
en línea
Lei Yang, Mengxue Xu and Yunan He    
Convolutional Neural Networks (CNNs) have become essential in deep learning applications, especially in computer vision, yet their complex internal mechanisms pose significant challenges to interpretability, crucial for ethical applications. Addressing t... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Olga Kurasova, Arnoldas Bud?ys and Viktor Medvedev    
As artificial intelligence has evolved, deep learning models have become important in extracting and interpreting complex patterns from raw multidimensional data. These models produce multidimensional embeddings that, while containing a lot of informatio... ver más
Revista: Informatics    Formato: Electrónico

 
en línea
Catur Supriyanto, Abu Salam, Junta Zeniarja and Adi Wijaya    
This research paper presents a deep-learning approach to early detection of skin cancer using image augmentation techniques. We introduce a two-stage image augmentation process utilizing geometric augmentation and a generative adversarial network (GAN) t... ver más
Revista: Computation    Formato: Electrónico

 
en línea
Varada Vivek Khanna, Krishnaraj Chadaga, Niranajana Sampathila, Srikanth Prabhu, Venkatesh Bhandage and Govardhan K. Hegde    
Polycystic Ovary Syndrome (PCOS) is a complex disorder predominantly defined by biochemical hyperandrogenism, oligomenorrhea, anovulation, and in some cases, the presence of ovarian microcysts. This endocrinopathy inhibits ovarian follicle development ca... ver más
Revista: Applied System Innovation    Formato: Electrónico

 
en línea
Ezekiel Bernardo and Rosemary Seva    
Explainable Artificial Intelligence (XAI) has successfully solved the black box paradox of Artificial Intelligence (AI). By providing human-level insights on AI, it allowed users to understand its inner workings even with limited knowledge of the machine... ver más
Revista: Informatics    Formato: Electrónico

 
en línea
Genane Youness and Adam Aalah    
Prognosis and health management depend on sufficient prior knowledge of the degradation process of critical components to predict the remaining useful life. This task is composed of two phases: learning and prediction. The first phase uses the available ... ver más
Revista: Aerospace    Formato: Electrónico

 
en línea
Mohit Kumar, Bernhard A. Moser, Lukas Fischer and Bernhard Freudenthaler    
In order to develop machine learning and deep learning models that take into account the guidelines and principles of trustworthy AI, a novel information theoretic approach is introduced in this article. A unified approach to privacy-preserving interpret... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
George Tzougas and Konstantin Kutzkov    
We developed a methodology for the neural network boosting of logistic regression aimed at learning an additional model structure from the data. In particular, we constructed two classes of neural network-based models: shallow?dense neural networks with ... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Parisa Mahya and Johannes Fürnkranz    
Recently, some effort went into explaining intransparent and black-box models, such as deep neural networks or random forests. So-called model-agnostic methods typically approximate the prediction of the intransparent black-box model with an interpretabl... ver más
Revista: AI    Formato: Electrónico

 
en línea
Fatma Yaprakdal and Merve Varol Arisoy    
In the smart grid paradigm, precise electrical load forecasting (ELF) offers significant advantages for enhancing grid reliability and informing energy planning decisions. Specifically, mid-term ELF is a key priority for power system planning and operati... ver más
Revista: Applied Sciences    Formato: Electrónico

« Anterior     Página: 1 de 3     Siguiente »