|
|
|
Lei Yang, Mengxue Xu and Yunan He
Convolutional Neural Networks (CNNs) have become essential in deep learning applications, especially in computer vision, yet their complex internal mechanisms pose significant challenges to interpretability, crucial for ethical applications. Addressing t...
ver más
|
|
|
|
|
|
|
Wandile Nhlapho, Marcellin Atemkeng, Yusuf Brima and Jean-Claude Ndogmo
The advent of deep learning (DL) has revolutionized medical imaging, offering unprecedented avenues for accurate disease classification and diagnosis. DL models have shown remarkable promise for classifying brain tumors from Magnetic Resonance Imaging (M...
ver más
|
|
|
|
|
|
|
Leon Kopitar, Iztok Fister, Jr. and Gregor Stiglic
Introduction: Type 2 diabetes mellitus is a major global health concern, but interpreting machine learning models for diagnosis remains challenging. This study investigates combining association rule mining with advanced natural language processing to im...
ver más
|
|
|
|
|
|
|
SeyedehRoksana Mirzaei, Hua Mao, Raid Rafi Omar Al-Nima and Wai Lok Woo
Explainable Artificial Intelligence (XAI) evaluation has grown significantly due to its extensive adoption, and the catastrophic consequence of misinterpreting sensitive data, especially in the medical field. However, the multidisciplinary nature of XAI ...
ver más
|
|
|
|
|
|
|
Manuel Zamudio López, Hamidreza Zareipour and Mike Quashie
This research proposes an investigative experiment employing binary classification for short-term electricity price spike forecasting. Numerical definitions for price spikes are derived from economic and statistical thresholds. The predictive task employ...
ver más
|
|
|
|
|
|
|
Ziyi Wang, Xinran Li, Luoyang Sun, Haifeng Zhang, Hualin Liu and Jun Wang
Efficient yet sufficient exploration remains a critical challenge in reinforcement learning (RL), especially for Markov Decision Processes (MDPs) with vast action spaces. Previous approaches have commonly involved projecting the original action space int...
ver más
|
|
|
|
|
|
|
Marco Scutari
Bayesian networks (BNs) are a foundational model in machine learning and causal inference. Their graphical structure can handle high-dimensional problems, divide them into a sparse collection of smaller ones, underlies Judea Pearl?s causality, and determ...
ver más
|
|
|
|
|
|
|
Dominik Warch, Patrick Stellbauer and Pascal Neis
In the digital transformation era, video media libraries? untapped potential is immense, restricted primarily by their non-machine-readable nature and basic search functionalities limited to standard metadata. This study presents a novel multimodal metho...
ver más
|
|
|
|
|
|
|
Geoffrey Aerts and Guy Mathys
This study investigates digitalization in the shipping industry by analyzing over 500 industry presentations from an eight-year span to discern key trends and nascent signals. Employing optical character recognition, advanced natural language processing ...
ver más
|
|
|
|
|
|
|
Robert Gorman
This article investigates the stylometric usefulness of morphosyntactic annotation. Focusing on the style of literary texts, it argues that including morphosyntactic annotation in analyses of style has at least two important advantages: (1) maintaining a...
ver más
|
|
|
|