|
|
|
Ognjen Radovic,Srdan Marinkovic,Jelena Radojicic
Credit scoring attracts special attention of financial institutions. In recent years, deep learning methods have been particularly interesting. In this paper, we compare the performance of ensemble deep learning methods based on decision trees with the b...
ver más
|
|
|
|
|
|
|
Nanda Nurisman, Trika Agnestasia Tarigan
Pág. 162 - 168
Labuhan Jukung Beach is one of the beaches in Kru, which is located on Krui Bay, West Coast District. This beach is a tourist beach directly adjacent to the Indian Ocean, so it has a high wave. Based on wind data from 2008 ? 2017 that be analyzed in this...
ver más
|
|
|
|
|
|
|
Dania Tamayo-Vera, Xiuquan Wang and Morteza Mesbah
The interplay of machine learning (ML) and deep learning (DL) within the agroclimatic domain is pivotal for addressing the multifaceted challenges posed by climate change on agriculture. This paper embarks on a systematic review to dissect the current ut...
ver más
|
|
|
|
|
|
|
Jun Li, Chenyang Zhang, Jianyi Zhang and Yanhua Shao
To address the challenge of balancing privacy protection with regulatory oversight in blockchain transactions, we propose a regulatable privacy protection scheme for blockchain transactions. Our scheme utilizes probabilistic public-key encryption to obsc...
ver más
|
|
|
|
|
|
|
Liang Liu, Tianbin Li and Chunchi Ma
Three-dimensional (3D) models provide the most intuitive representation of geological conditions. Traditional modeling methods heavily depend on technicians? expertise and lack ease of updating. In this study, we introduce a deep learning-based method fo...
ver más
|
|
|
|
|
|
|
Woo-Hyun Choi and Jung-Ho Lewe
This study proposes a deep learning model utilizing the BACnet (Building Automation and Control Network) protocol for the real-time detection of mechanical faults and security vulnerabilities in building automation systems. Integrating various machine le...
ver más
|
|
|
|
|
|
|
Hamed Raoofi, Asa Sabahnia, Daniel Barbeau and Ali Motamedi
Traditional methods of supervision in the construction industry are time-consuming and costly, requiring significant investments in skilled labor. However, with advancements in artificial intelligence, computer vision, and deep learning, these methods ca...
ver más
|
|
|
|
|
|
|
Max Schrötter, Andreas Niemann and Bettina Schnor
Over the last few years, a plethora of papers presenting machine-learning-based approaches for intrusion detection have been published. However, the majority of those papers do not compare their results with a proper baseline of a signature-based intrusi...
ver más
|
|
|
|
|
|
|
George Westergaard, Utku Erden, Omar Abdallah Mateo, Sullaiman Musah Lampo, Tahir Cetin Akinci and Oguzhan Topsakal
Automated Machine Learning (AutoML) tools are revolutionizing the field of machine learning by significantly reducing the need for deep computer science expertise. Designed to make ML more accessible, they enable users to build high-performing models wit...
ver más
|
|
|
|
|
|
|
Nils Hütten, Miguel Alves Gomes, Florian Hölken, Karlo Andricevic, Richard Meyes and Tobias Meisen
Quality assessment in industrial applications is often carried out through visual inspection, usually performed or supported by human domain experts. However, the manual visual inspection of processes and products is error-prone and expensive. It is ther...
ver más
|
|
|
|