21   Artículos

 
en línea
Sta?a Pu?karic, Mateo Sokac, ?ivana Nincevic, Danijela ?antic, Sanda Skejic, Tomislav D?oic, Heliodor Prelesnik and Knut Yngve Børsheim    
In this communication, we present an innovative approach leveraging advanced Machine Learning (ML) and Artificial Intelligence (AI) techniques, specifically the Non-Negative Matrix Factorization (NMF) method, to analyze downward and upward light spectra ... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Yuwen Fu, E. Xia, Duan Huang and Yumei Jing    
Machine learning has been applied in continuous-variable quantum key distribution (CVQKD) systems to address the growing threat of quantum hacking attacks. However, the use of machine learning algorithms for detecting these attacks has uncovered a vulner... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Rui-Yu Li, Yu Guo and Bin Zhang    
Nonnegative matrix factorization (NMF) is an efficient method for feature learning in the field of machine learning and data mining. To investigate the nonlinear characteristics of datasets, kernel-method-based NMF (KNMF) and its graph-regularized extens... ver más
Revista: Information    Formato: Electrónico

 
en línea
Chin-Yi Chen and Jih-Jeng Huang    
Traditional movie recommendation systems are increasingly falling short in the contemporary landscape of abundant information and evolving user behaviors. This study introduced the temporal knowledge graph recommender system (TKGRS), a ground-breaking al... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Tian Luo, Daofang Chang and Zhenyu Xu    
Accurate sales forecasting can provide a scientific basis for the management decisions of enterprises. We proposed the xDeepFM-LSTM combined forecasting model for the characteristics of sales data of apparel retail enterprises. We first used the Extreme ... ver más
Revista: Information    Formato: Electrónico

 
en línea
Yizhi Liu, Rutian Qing, Yijiang Zhao and Zhuhua Liao    
Road intersections are essential to road networks. How to precisely recognize road intersections based on GPS data is still challenging in intelligent transportation systems. Road intersection recognition involves detecting intersections and recognizing ... ver más
Revista: ISPRS International Journal of Geo-Information    Formato: Electrónico

 
en línea
Pengyu Li, Christine Tseng, Yaxuan Zheng, Joyce A. Chew, Longxiu Huang, Benjamin Jarman and Deanna Needell    
Classification and topic modeling are popular techniques in machine learning that extract information from large-scale datasets. By incorporating a priori information such as labels or important features, methods have been developed to perform classifica... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Dongjin Yu, Yi Shen, Kaihui Xu and Yihang Xu    
Point-Of-Interest (POI) recommendation not only assists users to find their preferred places, but also helps businesses to attract potential customers. Recent studies have proposed many approaches to the POI recommendation. However, the lack of negative ... ver más
Revista: ISPRS International Journal of Geo-Information    Formato: Electrónico

 
en línea
Guillaume Coiffier, Ghouthi Boukli Hacene and Vincent Gripon    
Deep Neural Networks are state-of-the-art in a large number of challenges in machine learning. However, to reach the best performance they require a huge pool of parameters. Indeed, typical deep convolutional architectures present an increasing number of... ver más
Revista: IoT    Formato: Electrónico

 
en línea
Thomas Jatschka, Günther R. Raidl and Tobias Rodemann    
This article presents a cooperative optimization approach (COA) for distributing service points for mobility applications, which generalizes and refines a previously proposed method. COA is an iterative framework for optimizing service point locations, c... ver más
Revista: Algorithms    Formato: Electrónico

« Anterior     Página: 1 de 2     Siguiente »