12   Artículos

 
en línea
Danilo Pau, Andrea Pisani and Antonio Candelieri    
In the context of TinyML, many research efforts have been devoted to designing forward topologies to support On-Device Learning. Reaching this target would bring numerous advantages, including reductions in latency and computational complexity, stronger ... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Antonio Candelieri, Andrea Ponti and Francesco Archetti    
Human as well as algorithmic searches are performed to balance exploration and exploitation. The search task in this paper is the global optimization of a 2D multimodal function, unknown to the searcher. Thus, the task presents the following features: (i... ver más
Revista: Big Data and Cognitive Computing    Formato: Electrónico

 
en línea
Andrea Ponti, Ilaria Giordani, Matteo Mistri, Antonio Candelieri and Francesco Archetti    
Large retail companies routinely gather huge amounts of customer data, which are to be analyzed at a low granularity. To enable this analysis, several Key Performance Indicators (KPIs), acquired for each customer through different channels are associated... ver más
Revista: Big Data and Cognitive Computing    Formato: Electrónico

 
en línea
Sina Shabani, Antonio Candelieri, Francesco Archetti and Gholamreza Naser    
This article proposes a new general approach in short-term water demand forecasting based on a two-stage learning process that couples time-series clustering with gene expression programming (GEP). The approach was tested on the real life water demand da... ver más
Revista: Water    Formato: Electrónico

 
en línea
Antonio Candelieri    
This paper presents a completely data-driven and machine-learning-based approach, in two stages, to first characterize and then forecast hourly water demand in the short term with applications of two different data sources: urban water demand (SCADA data... ver más
Revista: Water    Formato: Electrónico

« Anterior     Página: 1 de 1     Siguiente »