445   Artículos

 
en línea
Jeffrey Tim Query, Evaristo Diz     Pág. 145 - 159
AbstractIn this study we examine the robustness of fit for a multivariate and an autoregressive integrated moving average model to a data sample time series type.  The sample is a recurrent actuarial data set for a 10-year horizon.  We utilize ... ver más
Revista: IRA-International Journal of Management & Social Sciences    Formato: Electrónico

 
en línea
Tianao Qin, Ruixin Chen, Rufu Qin and Yang Yu    
Time series prediction is an effective tool for marine scientific research. The Hierarchical Temporal Memory (HTM) model has advantages over traditional recurrent neural network (RNN)-based models due to its online learning and prediction capabilities. G... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Yin Tang, Lizhuo Zhang, Dan Huang, Sha Yang and Yingchun Kuang    
In view of the current problems of complex models and insufficient data processing in ultra-short-term prediction of photovoltaic power generation, this paper proposes a photovoltaic power ultra-short-term prediction model named HPO-KNN-SRU, based on a S... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Feifei He, Qinjuan Wan, Yongqiang Wang, Jiang Wu, Xiaoqi Zhang and Yu Feng    
Accurately predicting hydrological runoff is crucial for water resource allocation and power station scheduling. However, there is no perfect model that can accurately predict future runoff. In this paper, a daily runoff prediction method with a seasonal... ver más
Revista: Water    Formato: Electrónico

 
en línea
Chih-Chiang Wei and Cheng-Shu Chiang    
In recent years, Taiwan has actively pursued the development of renewable energy, with offshore wind power assessments indicating that 80% of the world?s best wind fields are located in the western seas of Taiwan. The aim of this study is to maximize off... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Ilia Zaznov, Julian Martin Kunkel, Atta Badii and Alfonso Dufour    
This paper introduces a novel deep learning approach for intraday stock price direction prediction, motivated by the need for more accurate models to enable profitable algorithmic trading. The key problems addressed are effectively modelling complex limi... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Kevin Mero, Nelson Salgado, Jaime Meza, Janeth Pacheco-Delgado and Sebastián Ventura    
Unemployment, a significant economic and social challenge, triggers repercussions that affect individual workers and companies, generating a national economic impact. Forecasting the unemployment rate becomes essential for policymakers, allowing them to ... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Benjamin Burrichter, Juliana Koltermann da Silva, Andre Niemann and Markus Quirmbach    
This study employs a temporal fusion transformer (TFT) for predicting overflow from sewer manholes during heavy rainfall events. The TFT utilised is capable of forecasting overflow hydrographs at the manhole level and was tested on a sewer network with 9... ver más
Revista: Hydrology    Formato: Electrónico

 
en línea
Yoga Sasmita, Heri Kuswanto and Dedy Dwi Prastyo    
Standard time-series modeling requires the stability of model parameters over time. The instability of model parameters is often caused by structural breaks, leading to the formation of nonlinear models. A state-dependent model (SDM) is a more general an... ver más
Revista: Forecasting    Formato: Electrónico

 
en línea
Ligang Yuan, Jing Liu, Haiyan Chen, Daoming Fang and Wenlu Chen    
Scene taxiing time is an important indicator for assessing the operational efficiency of airports as well as green airports, and it is also a fundamental parameter in flight regularity statistics. The accurate prediction of taxiing time can help decision... ver más
Revista: Aerospace    Formato: Electrónico

« Anterior     Página: 1 de 27     Siguiente »