|
|
|
Jeffrey Tim Query, Evaristo Diz
Pág. 145 - 159
AbstractIn this study we examine the robustness of fit for a multivariate and an autoregressive integrated moving average model to a data sample time series type. The sample is a recurrent actuarial data set for a 10-year horizon. We utilize ...
ver más
|
|
|
|
|
|
|
Tianao Qin, Ruixin Chen, Rufu Qin and Yang Yu
Time series prediction is an effective tool for marine scientific research. The Hierarchical Temporal Memory (HTM) model has advantages over traditional recurrent neural network (RNN)-based models due to its online learning and prediction capabilities. G...
ver más
|
|
|
|
|
|
|
Yin Tang, Lizhuo Zhang, Dan Huang, Sha Yang and Yingchun Kuang
In view of the current problems of complex models and insufficient data processing in ultra-short-term prediction of photovoltaic power generation, this paper proposes a photovoltaic power ultra-short-term prediction model named HPO-KNN-SRU, based on a S...
ver más
|
|
|
|
|
|
|
Feifei He, Qinjuan Wan, Yongqiang Wang, Jiang Wu, Xiaoqi Zhang and Yu Feng
Accurately predicting hydrological runoff is crucial for water resource allocation and power station scheduling. However, there is no perfect model that can accurately predict future runoff. In this paper, a daily runoff prediction method with a seasonal...
ver más
|
|
|
|
|
|
|
Chih-Chiang Wei and Cheng-Shu Chiang
In recent years, Taiwan has actively pursued the development of renewable energy, with offshore wind power assessments indicating that 80% of the world?s best wind fields are located in the western seas of Taiwan. The aim of this study is to maximize off...
ver más
|
|
|
|
|
|
|
Ilia Zaznov, Julian Martin Kunkel, Atta Badii and Alfonso Dufour
This paper introduces a novel deep learning approach for intraday stock price direction prediction, motivated by the need for more accurate models to enable profitable algorithmic trading. The key problems addressed are effectively modelling complex limi...
ver más
|
|
|
|
|
|
|
Kevin Mero, Nelson Salgado, Jaime Meza, Janeth Pacheco-Delgado and Sebastián Ventura
Unemployment, a significant economic and social challenge, triggers repercussions that affect individual workers and companies, generating a national economic impact. Forecasting the unemployment rate becomes essential for policymakers, allowing them to ...
ver más
|
|
|
|
|
|
|
Benjamin Burrichter, Juliana Koltermann da Silva, Andre Niemann and Markus Quirmbach
This study employs a temporal fusion transformer (TFT) for predicting overflow from sewer manholes during heavy rainfall events. The TFT utilised is capable of forecasting overflow hydrographs at the manhole level and was tested on a sewer network with 9...
ver más
|
|
|
|
|
|
|
Yoga Sasmita, Heri Kuswanto and Dedy Dwi Prastyo
Standard time-series modeling requires the stability of model parameters over time. The instability of model parameters is often caused by structural breaks, leading to the formation of nonlinear models. A state-dependent model (SDM) is a more general an...
ver más
|
|
|
|
|
|
|
Ligang Yuan, Jing Liu, Haiyan Chen, Daoming Fang and Wenlu Chen
Scene taxiing time is an important indicator for assessing the operational efficiency of airports as well as green airports, and it is also a fundamental parameter in flight regularity statistics. The accurate prediction of taxiing time can help decision...
ver más
|
|
|
|