|
|
|
Haoran Liu, Kehui Xu, Bin Li, Ya Han and Guandong Li
Machine learning classifiers have been rarely used for the identification of seafloor sediment types in the rapidly changing dredge pits for coastal restoration. Our study uses multiple machine learning classifiers to identify the sediment types of the C...
ver más
|
|
|
|
|
|
|
Ashraf Abdelkarim and Ahmed F.D. Gaber
This study aims to assess the impact of flash floods in the Wadi Nu?man basin on urban areas, east of Mecca, which are subjected to frequent floods, during the period from 1988?2019. By producing and analyzing the maps of the regions, an integrated appro...
ver más
|
|
|
|
|
|
|
Peranut Nimitsurachat and Peter Washington
Emotion recognition models using audio input data can enable the development of interactive systems with applications in mental healthcare, marketing, gaming, and social media analysis. While the field of affective computing using audio data is rich, a m...
ver más
|
|
|
|
|
|
|
Rui Zhang, Mingwei Yao, Zijie Qiu, Lizhuo Zhang, Wei Li and Yue Shen
Wheat breeding heavily relies on the observation of various traits during the wheat growth process. Among all traits, wheat head density stands out as a particularly crucial characteristic. Despite the realization of high-throughput phenotypic data colle...
ver más
|
|
|
|
|
|
|
Jie Wang, Jie Yang, Jiafan He and Dongliang Peng
Semi-supervised learning has been proven to be effective in utilizing unlabeled samples to mitigate the problem of limited labeled data. Traditional semi-supervised learning methods generate pseudo-labels for unlabeled samples and train the classifier us...
ver más
|
|
|
|
|
|
|
Xiaodong Cui, Zhuofan He, Yangtao Xue, Keke Tang, Peican Zhu and Jing Han
Underwater Acoustic Target Recognition (UATR) plays a crucial role in underwater detection devices. However, due to the difficulty and high cost of collecting data in the underwater environment, UATR still faces the problem of small datasets. Few-shot le...
ver más
|
|
|
|
|
|
|
Sunny Kumar Poguluri and Yoon Hyeok Bae
The incorporation of machine learning (ML) has yielded substantial benefits in detecting nonlinear patterns across a wide range of applications, including offshore engineering. Existing ML works, specifically supervised regression models, have not underg...
ver más
|
|
|
|
|
|
|
Georgios Karantaidis and Constantine Kotropoulos
The detection of computer-generated (CG) multimedia content has become of utmost importance due to the advances in digital image processing and computer graphics. Realistic CG images could be used for fraudulent purposes due to the deceiving recognition ...
ver más
|
|
|
|
|
|
|
Manos Garefalakis, Zacharias Kamarianakis and Spyros Panagiotakis
As it concerns remote laboratories (RLs) for teaching microcontroller programming, the related literature reveals several common characteristics and a common architecture. Our search of the literature was constrained to papers published in the period of ...
ver más
|
|
|
|
|
|
|
Yang Zhang, Yuan Feng, Shiqi Wang, Zhicheng Tang, Zhenduo Zhai, Reid Viegut, Lisa Webb, Andrew Raedeke and Yi Shang
Waterfowl populations monitoring is essential for wetland conservation. Lately, deep learning techniques have shown promising advancements in detecting waterfowl in aerial images. In this paper, we present performance evaluation of several popular superv...
ver más
|
|
|
|