|
|
|
Woo-Hyun Choi and Jongwon Kim
Industrial control systems (ICSs) play a crucial role in managing and monitoring critical processes across various industries, such as manufacturing, energy, and water treatment. The connection of equipment from various manufacturers, complex communicati...
ver más
|
|
|
|
|
|
|
Min Ma, Shanrong Liu, Shufei Wang and Shengnan Shi
Automatic modulation classification (AMC) plays a crucial role in wireless communication by identifying the modulation scheme of received signals, bridging signal reception and demodulation. Its main challenge lies in performing accurate signal processin...
ver más
|
|
|
|
|
|
|
Jie Zhang, Fan Li, Xin Zhang, Yue Cheng and Xinhong Hei
As a crucial task for disease diagnosis, existing semi-supervised segmentation approaches process labeled and unlabeled data separately, ignoring the relationships between them, thereby limiting further performance improvements. In this work, we introduc...
ver más
|
|
|
|
|
|
|
MohammadHossein Reshadi, Wen Li, Wenjie Xu, Precious Omashor, Albert Dinh, Scott Dick, Yuntong She and Michael Lipsett
Anomaly detection in data streams (and particularly time series) is today a vitally important task. Machine learning algorithms are a common design for achieving this goal. In particular, deep learning has, in the last decade, proven to be substantially ...
ver más
|
|
|
|
|
|
|
Saikat Das, Mohammad Ashrafuzzaman, Frederick T. Sheldon and Sajjan Shiva
The distributed denial of service (DDoS) attack is one of the most pernicious threats in cyberspace. Catastrophic failures over the past two decades have resulted in catastrophic and costly disruption of services across all sectors and critical infrastru...
ver más
|
|
|
|
|
|
|
Yusuf Brima, Ulf Krumnack, Simone Pika and Gunther Heidemann
Self-supervised learning (SSL) has emerged as a promising paradigm for learning flexible speech representations from unlabeled data. By designing pretext tasks that exploit statistical regularities, SSL models can capture useful representations that are ...
ver más
|
|
|
|
|
|
|
Adil Redaoui, Amina Belalia and Kamel Belloulata
Deep network-based hashing has gained significant popularity in recent years, particularly in the field of image retrieval. However, most existing methods only focus on extracting semantic information from the final layer, disregarding valuable structura...
ver más
|
|
|
|
|
|
|
Peranut Nimitsurachat and Peter Washington
Emotion recognition models using audio input data can enable the development of interactive systems with applications in mental healthcare, marketing, gaming, and social media analysis. While the field of affective computing using audio data is rich, a m...
ver más
|
|
|
|
|
|
|
Xiaodong Cui, Zhuofan He, Yangtao Xue, Keke Tang, Peican Zhu and Jing Han
Underwater Acoustic Target Recognition (UATR) plays a crucial role in underwater detection devices. However, due to the difficulty and high cost of collecting data in the underwater environment, UATR still faces the problem of small datasets. Few-shot le...
ver más
|
|
|
|
|
|
|
Navid Khalili Dizaji and Mustafa Dogan
Brain tumors are one of the deadliest types of cancer. Rapid and accurate identification of brain tumors, followed by appropriate surgical intervention or chemotherapy, increases the probability of survival. Accurate determination of brain tumors in MRI ...
ver más
|
|
|
|