793   Artículos

 
en línea
Haoran Liu, Kehui Xu, Bin Li, Ya Han and Guandong Li    
Machine learning classifiers have been rarely used for the identification of seafloor sediment types in the rapidly changing dredge pits for coastal restoration. Our study uses multiple machine learning classifiers to identify the sediment types of the C... ver más
Revista: Water    Formato: Electrónico

 
en línea
Peranut Nimitsurachat and Peter Washington    
Emotion recognition models using audio input data can enable the development of interactive systems with applications in mental healthcare, marketing, gaming, and social media analysis. While the field of affective computing using audio data is rich, a m... ver más
Revista: AI    Formato: Electrónico

 
en línea
Manos Garefalakis, Zacharias Kamarianakis and Spyros Panagiotakis    
As it concerns remote laboratories (RLs) for teaching microcontroller programming, the related literature reveals several common characteristics and a common architecture. Our search of the literature was constrained to papers published in the period of ... ver más
Revista: Information    Formato: Electrónico

 
en línea
Yusuf Brima, Ulf Krumnack, Simone Pika and Gunther Heidemann    
Self-supervised learning (SSL) has emerged as a promising paradigm for learning flexible speech representations from unlabeled data. By designing pretext tasks that exploit statistical regularities, SSL models can capture useful representations that are ... ver más
Revista: Information    Formato: Electrónico

 
en línea
Yugen Yi, Haoming Zhang, Ningyi Zhang, Wei Zhou, Xiaomei Huang, Gengsheng Xie and Caixia Zheng    
As the feature dimension of data continues to expand, the task of selecting an optimal subset of features from a pool of limited labeled data and extensive unlabeled data becomes more and more challenging. In recent years, some semi-supervised feature se... ver más
Revista: Information    Formato: Electrónico

 
en línea
Xiaodong Cui, Zhuofan He, Yangtao Xue, Keke Tang, Peican Zhu and Jing Han    
Underwater Acoustic Target Recognition (UATR) plays a crucial role in underwater detection devices. However, due to the difficulty and high cost of collecting data in the underwater environment, UATR still faces the problem of small datasets. Few-shot le... ver más
Revista: Journal of Marine Science and Engineering    Formato: Electrónico

 
en línea
Jie Wang, Jie Yang, Jiafan He and Dongliang Peng    
Semi-supervised learning has been proven to be effective in utilizing unlabeled samples to mitigate the problem of limited labeled data. Traditional semi-supervised learning methods generate pseudo-labels for unlabeled samples and train the classifier us... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu    
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Dongming Wang, Li Xu, Wei Gao, Hongwei Xia, Ning Guo and Xiaohan Ren    
As an extremely important energy source, improving the efficiency and accuracy of coal classification is important for industrial production and pollution reduction. Laser-induced breakdown spectroscopy (LIBS) is a new technology for coal classification ... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Darian M. Onchis, Flavia Costi, Codruta Istin, Ciprian Cosmin Secasan and Gabriel V. Cozma    
(1) Background: Lung cancers are the most common cancers worldwide, and prostate cancers are among the second in terms of the frequency of cancers diagnosed in men. Automatic ranking of the risk groups of such diseases is highly in demand, but the clinic... ver más
Revista: Applied Sciences    Formato: Electrónico

« Anterior     Página: 1 de 46     Siguiente »